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Stability and Bifurcations of the Figure-8 Solution of the Three-Body Problem
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The stability properties of a recently discovered solution of the general three-body problem with equal
masses and the shape of a figure 8 are analyzed as the masses are varied. It is shown by numerical
continuation and the evaluation of the characteristic multipliers that the solution is stable only in a
narrow mass interval. Other less symmetrical and unstable solutions with equal masses in the same
homotopy class as the figure-8 orbit have been found. The branching behavior is also analyzed.
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The three-body problem in celestial mechanics is very
easy to define but impossible to solve. Since the formu-
lation of the law of gravitation by Newton, it has inspired
the progress of several branches of mathematics, and its
importance is now perceived as much in the mathematical
advances generated by the attempts at its solution as in the
actual problem itself.

However, despite its deceiving simplicity, it is a com-
plicated nonlinear problem and only very few proofs of
existence of explicit periodic solutions are known [1–3].
Two of them have been named after some of the most
prominent mathematicians, namely the equilateral solution
of Lagrange in which the three bodies are located at the
vertices of an equilateral triangle that rotates with constant
angular velocity, and the collinear solution of Euler where
two of the bodies rotate at constant angular velocity in a
circle while the third one is located at rest exactly in the
center of the circle. There are also elliptic shaped versions
of these solutions with varying angular velocity. On the
other hand, from the numerical point of view, a lot of work
has been done and an overwhelming amount of knowledge
has been accumulated over the years [4,5].

Since the work of Poincaré [6] it is known that the dy-
namical behavior of the three bodies can be very compli-
cated (unpredictable) and that the only hope to gain some
understanding of the backbone of the dynamical system is
to study the periodic solutions of the problem. A classical
(and unproven) conjecture affirms that any bounded solu-
tion of a Hamiltonian system can be approximated by a
periodic orbit.

The spectacular discovery of Chenciner and Mont-
gomery [7] of the existence of a new solution of the
three-body problem with equal masses in which all the
bodies follow the same eight-shaped curve has brought
great excitement to the dynamical system community.
This solution was first predicted by Moore [8] in the
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context of braids in classical dynamics. The method
of proof is based on variational arguments; after some
reductions the action integral is minimized in a restricted
set of symmetric arcs to prove the existence of a solution
in which the three bodies of equal masses chase each other
following a closed trajectory. However, the variational
proof is unable to decide about the stability of the solution.

Simó [9] computed this remarkable solution numerically
with great accuracy and announced elliptic stability; i.e.,
the nontrivial characteristic multipliers of the periodic orbit
are on the unit circle. The precise values of the nontriv-
ial characteristic multipliers (those which are not always
equal to one) are given by mj � exp�2pinj �, with n1 �
0.008 422 72, n2 � 0.298 092 53. Note that the smallness
of n1 indicates that the figure-8 solution is close to a
bifurcation.

Simó also discovered similar solutions for the case of
three bodies in the planar case [10] (up to 345 in number)
and for the general N-body problem �3 , N , 799� [9],
and gave them the name of “choreographies,” the defining
property being that all bodies follow a single closed curve
in phase space with a fixed delay. From the historical point
of view the solution of Lagrange in 1772 can be considered
as the first “choreography.” It has taken more that 200 years
to find the second one.

There has been some controversy about the stability
properties of the real minimizer of the action. It is not clear
whether the minimizer has to be elliptic or parabolic/hy-
perbolic. In Hamiltonian systems with 2 degrees of free-
dom, minimizing orbits are always unstable [11]; however,
for higher dimensional systems there are counterexamples
to this statement. It has been suggested [12] that there
must exist a less symmetric and unstable solution that is
the actual minimizer of the action for the three-body prob-
lem with equal masses. From the variational point of view,
if the symmetry restriction is relaxed and one enlarges the
© 2002 The American Physical Society 241101-1
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space of arcs over which the action is minimized, then ob-
viously the action will not increase. The actual minimizing
orbit would be in the same homotopy class as the figure-8
orbit [12], but no longer a choreography.

The purpose of this Letter is to try to clarify the relation
between the above-mentioned elliptic and hyperbolic solu-
tions, by studying the bifurcation behavior of the figure-8
solution as the masses are varied.

We have applied a continuation scheme [13] taking the
numerically computed figure-8 orbit as the starting solu-
tion. We follow a one-parameter family of solutions and
monitor the stability and the appearance of new branches
at the bifurcation points. This combination of local sta-
bility analysis and global path following is a valuable and
complementary approach to numerical simulations.

The equations of motion of the three bodies under their
mutual gravitational attraction are very easy to state:

ẍ1 � 2m2
x1 2 x2

jx1 2 x2j
3 2 m3

x1 2 x3

jx1 2 x3j
3 ,

ẍ2 � 2m1
x2 2 x1

jx1 2 x2j3
2 m3

x2 2 x3

jx2 2 x3j3
, (1)

ẍ3 � 2m2
x3 2 x2

jx3 2 x2j3
2 m1

x3 2 x1

jx1 2 x3j3
,

where xi � �xi, yi , zi� are the coordinates of the ith body
in �3, the dot means a time derivative, mi is the mass of
the ith body, and the universal constant of gravitation is
taken to be unity.

These equations can be written as a system of 18
first order differential equations and have seven time
independent conserved quantities, namely the Hamilto-
nian, the three components of the linear momentum P �P3

i�1 mi �xi, and the three components of the angular mo-
mentum L �

P3
i�1 mixi ^ �xi. These constants of motion

are a direct consequence of the autonomous character of
the equations and their invariance under translations and
rotations.

Additionally, the equations are invariant under the trans-
formation x ! cx and t ! c3�2t [14,15]. Because of this
scaling property of the equations, there is a trivial con-
tinuation on the period; arbitrarily close to any solution
there exists another solution which is just a scaled ver-
sion of the previous one and with exactly the same stabil-
ity. To remove this “trivial” continuation family, the period
has been fixed along the continuation branch and has been
taken equal to 2p in this work; the continuation parameter
which is allowed to vary will be one of the masses of the
bodies �m1�.

In a symmetrical dynamical system the result of the
application of a continuous symmetry on a generic peri-
odic solution is another periodic solution with identical
stability properties; that means that the orbits are foliating
manifolds whose dimensions are equal to the number of
conserved quantities plus one. For instance, in the case
of a Hamiltonian system with no other conserved quantity
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this is the well known “cylinder theorem” [1]. This equiva-
lence relation between solutions is the key to the symmetry
reduction of the problem. The dimension of the problem
can be reduced by eliminating some variables with the help
of the integrals of motion [15]. However, in this work we
have followed an alternative approach; we will maintain
the dimensionality of the problem and take into account
the symmetries in a different way.

The idea is to modify the systems in an appropriate
way and, at the same time, impose additional boundary
conditions to “freeze” the effect of the symmetry. The
output is a one parameter family of periodic solutions along
the manifold. The additional terms have to be chosen such
that the periodic solutions of the modified system are, in
fact, solutions of the original one. This same idea is present
in the classical proof of the Lyapunov center theorem. The
theoretical details of this continuation scheme as well as
its application to simple models can be found in Ref. [13],
and can be summarized as follows.

The equations of motion of the three bodies in a Ham-
iltonian formalism can be written as

�u�t� � J=H���u�t�, l��� , (2)

where u�t� is a state vector in �18 with the nine compo-
nents of the positions (generalized coordinates) and the
nine components of the velocities (generalized moments)
of the three bodies, H [ C`�U� is the Hamiltonian of the
three interacting bodies, J � � �

2�
�

� � is the simplectic
matrix, � and � are the nine-dimensional unity and zero
matrices, U is an open set in �18, and l is the parameter
which is allowed to vary during the continuation process.
Let us denote the six additional conserved quantities as
Fi [ C1�U� �i � 1, . . . , 6�.

For a generic orbit of the dynamical system, the vectors
=H�u, l� and =Fi�u, l� �i � 1, . . . , 6� will be linearly in-
dependent. Let u0 be a periodic orbit of Eq. (2) with period
T0 and l � l0. Finding a periodic solution with the same
period T0 and a different value of l is equivalent to solving
the following boundary value problem:

u0�t� � T0

"
J=H���u�t�, l��� 1 a=H���u�t�, l���

1

6X
i�1

bi=Fi���u�t�, l���

#
,

u�1� � u�0� , (3)

provided that a and bi �i � 1, . . . , 6� vanish. For con-
venience the time has been rescaled using T0 as a scaling
factor, such that the period equals one; also, we define
b � �b1, b2, . . . , b6�.

The continuation problem can be stated as

p � u�1; p, l, a, b� , (4)

where u�t; p, l, a, b� is the solution of Eq. (3) with
u�0� � p as the initial condition. Consider a solution
241101-2
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u0�t� such that u0�1� � u0�0� and such that l � l0,
a � 0, and b � 0.

Construct the function G : �181117 � �1817 by adding
seven additional boundary conditions.

G�p, l, a, b� �

2
666664

u�1; p,l, a, b� 2 p
�p 2 u0�0���J=H���u0�0�, l���
�p 2 u0�0���J=F1���u0�0�, l���

· · ·
�p 2 u0�0���J=F6���u0�0�, l���

3
777775 . (5)

The zeros of this function correspond to periodic solu-
tions of the problem. The theoretical result that allows the
continuation of a one-parameter family of periodic solu-
tions is the following.

Theorem 1: Let u0 be a solution of (2) with T � T0,
l � l0 for which the gradients of the seven time inde-
pendent first integrals are linearly independent and whose
monodromy matrix has 1 as an eigenvalue with geometric
multiplicity equal to 7. Then, there exists a unique branch
of solutions of the equation G�p, l, a, b� � 0 close to
���u0�0�, l0, 0, 0���. Moreover, along this branch a and b

vanish.
The proof of this result is a direct application of the

implicit function theorem and can be found in [13].
We are now ready to analyze the stability and bifurca-

tion behavior of the figure-8 orbit. It turns out that this
solution is generic and fulfills the hypothesis of the theo-
rem; it is a periodic solution of Eqs. (1) with period that
can be taken equal to 2p and l � m1 � 1, the gradients
of the seven conserved quantities are linearly independent,
and the eigenvalue one of the monodromy matrix has geo-
metric multiplicity equal to seven. The first output of our
continuation algorithm [16] are the nontrivial characteris-
tic multipliers for m1 � 1; we find mj � exp�2pinj � with
n1 � 0.008 422 7 and n2 � 0.298 092 5. The agreement
with the results of Simó [9] is a good test of our method.

The results of the continuation of the figure-8 as one of
the masses is varied in a very small scale is shown in Fig. 1.
The L2 norm of the solution is plotted as a function of the
mass of one of the bodies. The solution labeled by A is
the starting point of our calculation (the Moore-Chenciner-
Montgomery solution). This planar orbit is plotted in real
space in the upper panel of Fig. 2.

The solid curve in Fig. 1 corresponds to the stable region
of the family of solutions that emanates from the figure-8;
in that narrow mass interval ��1025� the multipliers are
elliptic. As the mass m1 is increased, the family reaches a
limit point (LP) and the branches return to lower values of
m1. Exactly at the turning point the solution loses stability
and becomes hyperbolic. If we continue along this branch
we come back to the case of all masses equal to one. This
solution, labeled B in Fig. 1, which by construction is in
the same homotopy class as the figure-8 solution, is hyper-
bolic, has less symmetry in the sense that it is no longer
a choreography, and was also computed numerically by
241101-3
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FIG. 1. Bifurcation diagram of the figure-8 solution. The
stable region is a narrow window between a limit point (LP)
and a branching point (BP) bifurcation.

Simó [10]. The three bodies follow three slightly differ-
ent figure-8 paths which are plotted in the lower panel of
Fig. 2.

However, if starting from solution A the mass m1 is de-
creased, we reach a bifurcation point (BP) which corre-
sponds to a symmetry breaking bifurcation in which two
symmetry related branches are born (pitchfork bifurca-
tion). When these solutions are continued until the value
of m1 � 1 is reached, the orbits are exactly the same as
solution B but with an interchange of the role played by
the bodies. The shape of the orbit is exactly the same as
the one plotted in the lower panel of Fig. 2 but with a per-
mutation of the labels of the bodies. The intersection of
the three branches at B is just apparent; it is an artifact of
the representation that we have chosen.

In Fig. 3 we shade the stability region in the m1-m2
plane of the figure-8 solution. It is straightforward to see
that there are just two dimensionless parameters in Eq. (1)
and, therefore, the third mass m3 is kept fixed and equal to
1. The solid lines are the positions of the limit points. The
branch points are labeled by BP and the position of the
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FIG. 2. Real space representation of the figure-8 solution (A)
and the other unstable solution (B).
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FIG. 3. Stability region in the m1-m2 plane of the figure-8
solution.

figure-8 solution is marked with an A. The dashed lines
are just intended to visually enhance the symmetry along
the diagonal.

In principle, the figure-8 solution could be continued
into the restricted three-body problem along this diago-
nal by increasing the values of two of the masses, but in
practice, we find that as the two masses are taken to be
equal and large, then the bodies collide.

From the variational point of view, solution B is a mini-
mizer of the action in a much larger space of functions
than solution A. However, when the action is computed,
we obtain the unexpected result that, within the precision
of our calculations, it has the same action as the figure-8
solution. Using its standard definition, the value of the
action integral is found to be S � 24.371 97. This is not
in contradiction with the variational principle but reveals a
degeneracy that deserves further analysis.

There are obvious starting points to extend the continua-
tion of the family of solutions far from the neighborhood of
m1 � 1, namely, the new branch that is born at the branch-
ing point and the unstable branch that persists after the
B solution has been reached. These paths have been fol-
lowed, and by continuing the subsequent branching of the
solutions, it has been possible to connect the figure-8 so-
lutions where all the masses are equal with the restricted
three-body problem, where one of the masses vanishes. In
between, we have found, as expected, a very rich bifur-
cation behavior, including collisions; these results will be
presented elsewhere.

It is worth mentioning that all the solutions presented
in this paper are planar but this is an outcome of the
calculations. During the continuation process the orbits
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could develop spatial (three-dimensional) features but in
the regions of this work they remain two-dimensional. The
figure-8 solution is elliptically stable, but most of the other
solutions found in the continuation process are unstable
(hyperbolic). The continuation scheme has been designed
to treat both solutions equally, but in real astronomical
observations, only the stable periodic orbits are visible.
By means of a careful analysis of the multipliers we have
been able to detect other branches where the multipliers
are elliptic. It would be interesting to apply our numerical
scheme to the new recently discovered planetary systems
HD168443 or Gliese 876 [17] to establish the mass interval
in which stability can be preserved.
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