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P. Bruno
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

(Received 31 January 2002; published 29 May 2002)

The zero-point quantum fluctuations of the electromagnetic field in vacuum are known to give rise to
a long-range attractive force between metal plates (Casimir effect). For ferromagnetic layers separated
by vacuum, it is shown that the interplay of the Casimir effect and of the magneto-optical Kerr effect
gives rise to a long-range magnetic interaction. The Casimir magnetic force is found to decay as D21 in
the limit of short distances, and as D25 in the limit of long distances. Explicit expressions for realistic
systems are given in the large- and small-distance limits. An experimental test of the Casimir magnetic
interaction is proposed.
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Since the discovery of magnets by the ancient Greeks,
long-range magnetic interactions have been an object of
fascination. It is usually considered that there exists es-
sentially two types of magnetic interactions between mag-
netic moments or magnetized bodies: (i) the dipole-dipole
magnetostatic interaction, and (ii) the electron-mediated
exchange interaction. The latter have recently received
renewed attention, with the discovery of spectacular os-
cillatory behavior of the interlayer exchange coupling be-
tween ferromagnetic layers separated by a nonmagnetic
metal spacerl [1], due to a spin-dependent quantum size
effect [2].

For the case of two uniformly magnetized ferromagnetic
plates (of infinite lateral extension) held parallel to each
other in vacuum, the two above-mentioned magnetic cou-
pling mechanisms yield a magnetic interaction which de-
creases exponentially with interplate distance D: (i) the
stray field due to a uniformly magnetized plate decreases
exponentially (with a characteristic decay length of the or-
der of the interatomic distance) with the distance from the
plate, and so does also the interplate dipolar interaction;
(ii) the interplate exchange interaction also decays expo-
nentially with D, since it is mediated by electrons tunnel-
ing through vacuum between the two plates. The aim of
this Letter is to point out the existence of a novel, so far
overlooked, mechanism of magnetic interaction between
magnetized (i.e., ferro- or ferrimagnetic) bodies. This in-
teraction arises from the Casimir effect, and gives rise to
a long-range (i.e., with power-law decay) magnetic inter-
action; at sufficiently large distance D it is therefore the
dominant mechanism of magnetic interaction between the
two ferromagnetic plates.

As Casimir pointed out in a seminal paper [3], the zero-
point quantum fluctuations of the electromagnetic (EM)
field in vacuum leads to observable effects: changing the
boundary condition of the EM field (e.g., by moving a body
with respect to another) yields a finite change of the (infi-
nite) zero-point energy of the system, and therefore results
in an observable force. In particular, Casimir predicted
the existence of a long-range attractive force between mir-
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rors in vacuum. The Casimir effect is currently attracting
considerable interest [4,5], in particular with respect to mi-
cromechanical devices, and has deep implications in many
fields of physics.

The boundary condition of the EM field can, how-
ever, also be modified without any mechanical displace-
ment, but rather by changing the order parameter of a
collective ordering phenomenon such as ferromagnetism.
When the two mirrors are ferromagnetic, the magneto-
optical Kerr effect influences the boundary condition of
the EM field, so that the Casimir effect manifests as an
energy difference (per unit area) DE � EAF 2 EFM be-
tween the configurations in which the two mirrors have
their magnetizations antiparallel (AF) or parallel (FM) to
each other, i.e., as a magnetic interaction. Alternatively,
the above effect manifests as a dependence of the (me-
chanical) Casimir force (per unit area) among the mir-
rors upon the relative orientation of their magnetizations:
DF � FAF 2 FFM � 2dDE �dD. The Casimir mag-
netic force DF has been calculated for ferromagnetic mir-
rors described by a Drude model: in the limit of very large
distance, the magnetic force decays as D25; in the limit
of small distances, it decays as D21; in the intermediate
regime, it decays as D24. For equivalent ferromagnetic
materials on both sides, the Casimir magnetic interaction
is always antiferromagnetic. For realistic systems, the ex-
plicit expression of the Casimir magnetic force is found
to be

DF �
23z �3�
16p3

h̄c2

D5

uAuB
p
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in the limit of large distance, where sA�B� and uA�B� are,
respectively, the dc conductivity and anomalous Hall angle
of the ferromagnetic plate A (B), and
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in the limit of short distances, where ´
A�B�
xx �iv� and
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´
A�B�
xy �iv� are, respectively, the diagonal and off-diagonal

elements of the dielectric tensor of the ferromagnetic plate
A (B), evaluated at imaginary frequency iv.

The Casimir interaction energy (per unit area) between
two mirrors can be conveniently expressed in terms of their
reflection coefficients as [6,7]
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Im Tr ln�1 2 RARBe2ik�D� , (3)

where kk and k� are the components of the wave vector
parallel and perpendicular to the mirrors, respectively. The
above expression is completely analogous to the one de-
rived independently for the case of interactions mediated
by fermions (electrons) [2]. The 2 3 2 matrix of reflection
coefficients on mirror A (B) is given by

RA�B� �

√
r

A�B�
ss r

A�B�
sp

r
A�B�
ps r

A�B�
pp

!
, (4)
240401-2
where the index s (p) corresponds to a polarization with
the electric field perpendicular (parallel) to the incidence
plane. The off-diagonal matrix elements rsp and rps

are responsible for the magneto-optical effects. With
the usual convention that the s axis remains unchanged
upon reflection, one has rsp � rps, and, for perpendic-
ular incidence, rss � 2rpp . Performing the change of
variables �v, kk� ! �v, k�� and using complex plane
integration methods, one can rewrite Eq. (3) at T � 0
as [7]

E �
h̄

4p2

Z 1`

0
k� dk�

Z k�c

0
dv

3 Re Tr ln�1 2 RA�iv, ik��RB�iv, ik��e22k�D� ,
(5)

where the reflection coefficients are evaluated at imaginary
values of the frequency and normal wave vector.

For a mirror magnetized along its normal (pointing out-
wards), the reflection coefficients are given by [8]
rss�iv, ik�� �
k�c 2

p
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k�c 1
p
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,
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, (6a)
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�
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. (6b)
For the sake of simplicity, the arguments �iv, ik�� will be
omitted below. If the magnetization points inward, then
the sign of rsp and rps is reversed.

Since the magneto-optical reflection coefficients rsp are
usually much smaller than 1 and the usual reflection coef-
ficients rss and rpp, one can expand the Casimir magnetic
energy to lowest order in the magneto-optical coefficients,
yielding
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(7)

Equation (7) together with Eqs. (6a) and (6b) allow to cal-
culate the Casimir magnetic energy and force.

In order to illustrate the above result, let us calculate the
Casimir magnetic interaction for the case of (equivalent)
ferromagnetic mirrors with a dielectric tensor approxi-
mated by a Drude model:

´xx�iv� � 1 1
vp

2t

v�1 1 vt�
,

´xy�iv� �
vp

2vct2

v�1 1 vt�2 .

(8)
The plasma frequency vp is given by vp
2 � 4pne2�m�;

vc � eBeff�m�c is the cyclotron frequency, where Beff
is the effective magnetic field experienced by conduction
electrons as a result of the combined effect of the exchange
and spin-orbit interactions; t is the relaxation time. It
is assumed that vct ø 1 ø vpt, which constitutes the
usual situation.

One can distinguish three different regimes: (i) D ¿

ct, (ii) c�vp ø D ø ct, and (iii) D ø c�vp. In
regime (i) (i.e., at long distances), the integral in Eq. (7)
is dominated by the range v # k�c � c�D ø 1�t, for
which one has

´xx�iv� �
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2t

v
¿ 1, ´xy�iv� �

vp
2vct2

v
, (9)

so that
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p
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One then finds that
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where z �x� �
P`

n�1 n2x is the Riemann zeta function,
with z �3� � 1.202 . . . .

In the intermediate-distance regime (ii) (c�vp ø D ø
ct), the integral in Eq. (7) is dominated by the range
1�t ø v # k�c � c�D ø vp , for which one has
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v3 , (12)

so that
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. (13)

One then finds that
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In the short-distance regime (iii) (D ø c�vp), one
needs to consider separately the range with v # k�c ø

vp , for which the reflection coefficients are given by
Eqs. (13), and the range with vp ø v # k�c. For
v ¿ vp, ´xy is given by Eq. (12) and
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v2 ø 1 , (15)
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One then finds that
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where v� is a cutoff frequency of the order of the plasma
frequency vp .

For realistic systems, it is in general necessary to per-
form a detailed calculation. However, in the limit of
large and small distances, explicit expressions can be ob-
tained. At large distances (i.e., for D ¿ c�t), the Casimir
magnetic force is essentially determined by the dielectric
tensor ´ij�iv� � dij 1 4psij�iv��v at low imaginary
frequency. In this regime, one can safely approximate the
conductivity tensor sij�iv�, in the above expression, by its
dc value: sxx�iv� � s, sxy�iv� � su, where s is the
dc conductivity, and u is the anomalous Hall angle of the
ferromagnetic mirror. Proceeding as for the Drude model,
one then obtains

DE �
23z �3�
64p3

h̄c2

D4

uAuB
p

sAsB
, (18)

from which Eq. (1) follows immediately.
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For short distances, the Casimir magnetic interaction
is dominated by imaginary wave vectors ik� with v� ø

k�c � c�D, where the cutoff frequency v� is of the or-
der of the plasma frequency, or the typical frequency of
interband transitions. In this regime, one has

jrssj ø 1, rpp ø 1, rsp � 2
v´xy�iv�

2k�c�1 1 ´xx�iv��
.

(19)

One eventually obtains
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from which Eq. (2) follows immediately.
Let us now discuss whether the novel Casimir mag-

netic interaction can be observed experimentally. Obvi-
ously, the regime of potential experimental interest is the
short-distance limit. To obtain a rough estimate of the
magnitude of the effect, it is sufficient to approximate the
(magneto-)optical absorption spectrum by a single absorp-
tion line at frequency v0 containing all the spectral weight,
i.e., we write

Im´xx�v� � v0´eff
xx d�v 2 v0� , (21a)

Re´xy�v� � v0´eff
xy d�v 2 v0� . (21b)

This is expected to be a good approximation in the limit
of small distances (i.e., high frequencies), where the de-
tails of the (magneto-)optical spectra should not matter too
much. The dielectric tensor at the imaginary frequency is
then obtained from the causality relations
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and one eventually obtains
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By simple inspection of the (magneto-)optical absorption
spectra of transition metal ferromagnets [9], one finds that
the model parameters assume the typical values v0 � 6 3

1015 s21, ´eff
xx � 10, and ´eff

xy � 1.5 3 1022. Experimen-
tally, it is usually not convenient to maintain two plates
accurately parallel to each other, so that a configuration
with a planar mirror and a lens-shaped mirror is usually
adopted. Even in this configuration, the parasitic mag-
netostatic interaction can be made as small as needed by
taking a uniformly magnetized plate of sufficiently low
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thickness and sufficiently large lateral extension. The net
resulting Casimir magnetic force DF (not to be confused
with the Casimir magnetic force per unit area DF ) is
then obtained by means of the “proximity force theorem”
[10]: DF � 2pRDE �D�, where R is the curvature radius
of the lens-shaped mirror and D is the shortest distance.
For R � 100 mm and D # c�v0 � 50 nm, one finds that
jDFj � 10 fN , with only a weak (logarithmic) depen-
dence upon D.

The Casimir magnetic force DF is several orders of
magnitude weaker than the nonmagnetic Casimir force
F (jFj � 0.5 nN, for D � 50 nm); however, it can be
detected independently of F by using a resonant differ-
ential method, as done in “magnetic resonant force mi-
croscopy” [11,12]: in this approach, one measures the
mechanical force between two magnetic samples, one of
them being fixed and magnetically hard, the other one be-
ing magnetically soft and attached to a high-Q mechanical
resonator (of resonance frequency vr ) consisting of a mi-
crocantilever. By modulating the magnetization of the soft
sample by means of an ac magnetic field (the hard sample
remaining unchanged) at v � vr , one can detect the mag-
netic force among the two samples (i.e., the difference
DF � FAF 2 FFM) with a considerably higher sensitiv-
ity than allowed by a dc measurement of FAF or FFM
separately. In addition, when measuring the nonmagnetic
Casimir effect, great care has to be taken to eliminate para-
sitic electrostatic interactions, which is done automatically
in the approach proposed here. A detailed discussion of
the sensitivity limitations of magnetic resonant force mi-
croscopy is given in Ref. [12]: it is limited on one hand
by the sensitivity in measuring the deflection of the can-
tilever, which yields jDFminj $ kdx�Q (where k is the
cantilever spring constant, Q is the quality factor, and
dx is the deflection sensitivity), and by the thermome-
chanical noise on the other hand, which yields jDFminj $p

4kBTDnk��vr Q�, for a bandwidth Dn. For the can-
tilever used in Ref. [11] (k � 1 mN�m, Q � 3000, vr �
1.4 kHz), a force sensitivity of 0.5 fN at room tempera-
ture was obtained, to be compared with the sensitivity of
at best 1 pN reported in Ref. [4] for the dc measurement
of the nonmagnetic Casimir effect. Prospects for further
improvement in the force sensitivity in magnetic resonant
force microscopy up to �3 3 10217 N�

p
Hz at room tem-

perature and �4 3 10218 N�
p

Hz at 4.2 K are discussed
in Ref. [12]. Indeed, force sensitivity in the attoNewton
(10218 N) range has recently been demonstrated [13].

The cantilever used in Ref. [11] consisted of a
50-mm-long, 5-mm-wide, and 90-nm-thick Si beam
terminated by a square paddle of 30 mm side length. Such
a cantilever would be appropriate for the proposed experi-
ment. By depositing a droplet of polymer on the paddle,
it would be possible to produce a lens-shaped substrate
of suitable curvature radius (�100 mm), which could
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then be covered by evaporation with a thin (�10 nm)
layer of a soft ferromagnet such as permalloy. Great care
has to be taken to minimize the parasitic magnetostatic
interaction: the hard magnetic plate should be as wide,
thin, and magnetically uniform as possible. One should
therefore choose a material with a high coercivity and
100% remanence. A thin (�10 nm) layer of CoPt alloy
or a Co�Pt multilayer would be suitable. For a plate
radius of 1 cm, the parasitic magnetostatic force can be
estimated to be below 1 attoNewton, which is sufficient
for the present purpose. Finally, the parasitic force due to
the interaction of the soft ferromagnet with the ac field
would yield a signal at 2v and would therefore be filtered
out by lock-in detection.

To conclude, the above discussion suggests that the
experimental test of the novel Casimir magnetic interac-
tion would indeed be possible by using currently available
techniques.
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