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Complex adaptive systems have been the subject of much recent attention. It is by now well established
that members (“agents”) tend to self-segregate into opposing groups characterized by extreme behavior.
However, the study of such adaptive systems has mostly been restricted to simple situations in which the
prize-to-fine ratio R equals unity. In this Letter we explore the dynamics of evolving populations with
various different values of the ratio R, and demonstrate that extreme behavior is in fact not a generic
feature of adaptive systems. In particular, we show that “confusion” and “indecisiveness” take over in
times of depression, in which case cautious agents perform better than extreme ones.
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A problem of central importance in social, biological,
and economic sciences is that of an evolving population
in which individual agents adapt their behavior accord-
ing to past experience, without direct interaction between
different members. Of particular interest are situations in
which members (usually referred to as “agents”) compete
for a limited resource, or to be in a minority (see, e.g., [1],
and references therein.) In financial markets, for instance,
more buyers than sellers implies higher prices, and it is
therefore better for a trader to be in a minority group of
sellers. Predators foraging for food will do better if they
hunt in areas with fewer competitors. Rush-hour drivers,
facing the choice between two alternative routes, wish to
choose the route containing the minority of traffic [2].

Considerable progress in the theoretical understanding
of such systems has been gained by studying the simple,
yet realistic model of the minority game (MG) [3], and its
evolutionary version (EMG) [1] (see also [4–13], and ref-
erences therein). The EMG consists of an odd number of
N agents repeatedly choosing whether to be in room “0”
(e.g., choosing to sell an asset or taking route A) or in
room “1” (e.g., choosing to buy an asset or taking route B).
At the end of each turn, agents belonging to the smaller
group (the minority) are the winners, each of them gains
1 point (the “prize”), while agents belonging to the major-
ity room lose 1 point (the “fine”). The agents have a com-
mon “memory” look-up table, containing the outcomes of
m recent occurrences (the particular value of m is of no
importance [1]). Faced with a given bit string of recent m
occurrences, each agent chooses the outcome in the mem-
ory with probability p, known as the agent’s “gene” value
(and the opposite alternative with probability 1 2 p). If
an agent score falls below some value d, then its strategy
(i.e., its gene value) is modified. In other words, each agent
tries to learn from his past mistakes, and to adjust his strat-
egy in order to survive.

A remarkable conclusion deduced from the EMG [1]
is that a population of competing agents tends to self-
segregate into opposing groups characterized by extreme
behavior. It was realized that in order to flourish in such
0031-9007�02�88(23)�238702(4)$20.00
situations an agent should behave in an extreme way
(p � 0 or p � 1) [1].

It should be emphasized, however, that previous analy-
ses were restricted to the simple case in which the prize-to-
fine ratio R was assumed to be equal unity. On the other
hand, in many real life situations this ratio may take a va-
riety of different values. In the extreme situation, the fine
(e.g., a temporary worker getting fired of work after being
late to the office due to a traffic jam, or a predator being
starved to death while unsuccessfully trying to hunt in an
area with many competitors) may be larger than the prize
(a day’s payment or a successful hunt which guarantees
food for few days, respectively). Another example is that
of a trader in a financial market which is under depres-
sion. In such circumstances, the trader usually loses more
money in a bad deal than he gains in a successful one (due
to overall reduction in market’s value).

Moreover, we know from real life situations that extreme
agents not always perform better than cautious ones. In
particular, our daily experience indicates that in difficult
situations (e.g., when the prize-to-fine ratio is low) human
people tend to be confused and indecisive. In fact, in such
circumstances they usually seek to do the same (rather than
the opposite) as the majority.

Thus, of great interest for real social and biological
systems are situations in which the prize-to-fine ratio is
smaller (or larger) than unity. The aim of the present Let-
ter is to explore the dynamics of evolving populations with
various different external conditions (i.e., different values
of the ratio R). Of main importance is the identification of
the strategies that perform best in a particular situation.

Figure 1 displays the long-time frequency distribution
P�p� of the agents [the lifespan, L�p�, defined as the aver-
age length of time a strategy p survives between modifica-
tions, has a similar behavior]. We find three qualitatively
different populations, depending on the precise value of
the prize-to-fine ratio parameter R. For R . R�1�

c (this in-
cludes the case studied so far in the literature, R � 1. The
value of R�1�

c depends on the number of agents and the pa-
rameter d) the distribution becomes peaked around p � 0
© 2002 The American Physical Society 238702-1
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FIG. 1. The strategy distribution P�p� for different values of
the prize-to-fine ratio: R � 0.971, R � 0.992, and R � 1. The
results are for N � 10 001 agents, d � 24. Each point rep-
resents an average value over 10 runs and 100 000 time steps
per run.

and p � 1; the population will self-segregate (this corre-
sponds to always or never following what happened last
time). To flourish in such a population, an agent should
behave in an extreme way [1]. On the other hand, for
R , R�2�

c (poor conditions, in which the fine is larger than
the reward) the population tends to crowd around p � 1

2 .
This corresponds to “confused” and “indecisive” agents.
There is also an intermediate phase [for R�2�

c , R , R�1�
c ],

in which the population tends to form an M-shaped distri-
bution, peaked around some finite p0 and its counterpart
1 2 p0 (with the absolute minimas of the distribution lo-
cated at p � 0 and p � 1).

An important feature of the original EMG (for the
R � 1 case [1]) is that the root-mean-square (rms) separa-
tion of the strategies is higher than the corresponding value
for uniform P�p�. This indicates the desire of agents to do
the opposite of the majority [1]. Figure 2 shows the rms
separation of the population as a function of the prize-to-
fine ratio R. Remarkably, we find that for small values
of R the rms is in fact smaller than that obtained for a
uniform P�p� distribution. We therefore conclude that in
times of difficulties agents desire to do the same (rather
than the opposite) as the majority. This is exactly the type
of behavior we anticipated in the introduction based on
daily experience.

Qualitatively, we have found that the larger the number
of agents N , the sharper the dependence of the system’s
behavior is on the prize-to-fine ratio R (that is, the peak in
Fig. 2 is sharper for larger values of N). This may indicate
a sharp phase transition (instead of a continuous change of
the global behavior with R) in the limit of N ! `.

In the original EMG [1] it was found that the dynamics
of the system leads to situations in which the size of the
minority group is maximized, indicating that the efficiency
of the system is maximized. The (scaled) efficiency of the
238702-2
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FIG. 2. The root-mean-square separation (rms) of the strate-
gies as a function of the prize-to-fine ratio R. The horizontal
line represents the rms separation for a uniform P�p� distribu-
tion. N � 1001, d � 24. Each point represents an average
value over 10 runs and 10 000 time steps per run.

system is defined as the number of agents in the minority
room, divided by the maximal possible size of the minor-
ity group, �N 2 1��2. Figure 3 displays the system’s ef-
ficiency as a function of the ratio R. We also display the
efficiency for agents guessing randomly between room 0
and room 1, and for a uniform distribution of agents. As
previously found, there is a range of R (which includes the
previously studied case R � 1 [1]) in which the efficiency
of the system is better than the random case. However, for
small values of the prize-to-fine ratio, the efficiency of the
system is remarkably lower than that obtained for agents
choosing via independent coin tosses. Thus, considering
the efficiency of the system as a whole, the agents would
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FIG. 3. The (scaled) efficiency E of the system as a func-
tion of the prize-to-fine ratio R. Horizontal lines represents the
efficiency for uniform P�p� distribution (dashed) and a coin-
tossing situation (dash-dotted). The parameters are the same as
in Fig. 2.
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be better off not adapting their strategies because they are
doing worse than just guessing at random.

Note that an optimum utilization of the resources is ob-
tained at some Rmax . 1 (with Rmax 2 1 ø 1). This im-
plies that an evolving population requires a small positive
feedback in order to exploit its resources in an optimal
way. On the other hand, a wealthy society has an efficiency
which is worse than that of a uniform P�p� distribution
(this occurs for prize-to-fine ratios which are too large).
This reflects the fact that in a “spoiling” environment the
agents have no real motivation to evolve (they have a long
lifespan even without exploiting their resources in an op-
timal way).

In previous studies (of the R � 1 case) it has been estab-
lished that the evolving population enters into a stationary
phase, in which case the P�p� distribution remains essen-
tially constant in time [4,7]. In Fig. 4 we display the time
dependence of the average gene value, �p�, for different
values of the prize-to-fine ratio R. The distribution P�p�
oscillates around p � 1

2 . The smaller the value of R the
larger are the amplitude and the frequency of the oscilla-
tions. Thus, we conclude that a population which evolves
in a tough environment never establishes a steady state dis-
tribution. Agents are constantly changing their strategies,
trying to survive. By doing so they create global currents
in the gene space.

We now provide some analytical analysis of the prob-
lem, a generalization of the one presented in [1] for ar-
bitrary values of the prize-to-fine ratio R. The simplest
example of our system contains N � 3 agents, and three
discrete gene values p � 0, 1

2 , 1. We consider configura-
tions for which the average gene value lies between 1

3 and
2
3 , a reminiscent of the fact that �p� displays only mild
oscillations around p � 1

2 . To obtain the average P�p�
distribution we weigh the various configurations accord-
ing to the average points awarded per agent in each of
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FIG. 4. Time evolution of the average gene value �p�, for
different values of the prize-to-fine ratio: R � 0.9 and R � 1.
The parameters are the same as in Fig. 1.
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the configurations [14]. The analytical results are given in
Table I [note that P�0� � P�1�]. We find that this simpli-
fied toy model provides a fairly good qualitative descrip-
tion of the complex system. In particular, it follows that
the population self-segregates for prize-to-fine ratios larger
than Rc � 5

7 , while for R , Rc the agents tend to cluster
around p � 1

2 . In addition, the efficiency of the system is
maximal at intermediate values of the prize-to-fine ratio,
while poor �R , 2� and wealthy �R . 3� populations dis-
play a lower efficiency.

One can improve the analysis of the evolutionary mi-
nority game with the aid of a semianalytical model [15].
The semianalytical model is based on the fact that the
population never establishes a true stationary distribution
(see Fig. 4). This fact has been ignored in previous studies
of the evolutionary minority game. Thus, the probability
of a particular agent to win is time dependent. In fact, the
winning probability oscillates with time; the oscillation
amplitude depends on both the value of the prize-to-fine
ratio R, and on the agent’s gene value p (the smaller the
value of R, the larger is the oscillation amplitude; in ad-
dition, agents with p � 0, 1 have an oscillation amplitude
larger than those with p � 1�2).

It turns out that the temporal oscillations of the winning
probabilities explain the transition of the system’s global
behavior from self-segregation to clustering: For small
values of R (when the prize is smaller than the fine) there
is a negative global drift of the agents’s score towards 2d.
Thus, agents with an equal number of winnings and losses
will eventually perish [after approximately 2d��1 2 R�
turns]. In order to survive in harsh conditions �R , 1�
agents must win more times than they lose. Agents with
p � 0, 1 have a winning probability which oscillates in
time with a large amplitude, and therefore most of these
agents win and lose the same number of times in each
cycle of the oscillations. On the other hand, agents with
p � 1�2 have a winning probability which is practically
constant ��1�2� in time. Thus, these are the only agents
that can win more times than they lose. Therefore, for
small values of the prize-to-fine ratio, agents tend to cluster
around p � 1�2.

In summary, we have explored the evolution of complex
adaptive systems with an arbitrary value of the prize-to-
fine ratio R. The main results and their implications are
as follows:

(i) It has been widely accepted that self-segregation
is a generic characteristic of an evolving population of
competing agents. This belief was based on studies of the

TABLE I. Distribution of strategies and efficiency of a three
agents system.

R P�0�:P� 1
2 � Efficiency

R , 2 19R253
26R258

57R2150
64R2164

2 # R # 3 2.5 1
R . 3 23R249

23R261
85R2191
92R2212
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R � 1 case. Our analysis, however, turns over this point
of view. In particular, in times of difficulties agents tend
to cluster around p � 1

2 ; cautious agents perform better
(live longer) than extreme ones. Stated in a more picto-
rial way, confusion and indecisiveness take over at tough
times.

(ii) In previous analyses it was found that agents desire
to do the opposite of the majority [1]. We have shown that
this property is in fact not a generic one. In particular,
in a tough environment agents try to do the same as the
majority [the rms separation of strategies is in fact smaller
than that obtained for a uniform P�p� distribution].

(iii) For small values of the prize-to-fine ratio (poor
external conditions) the efficiency of the system is well
below the efficiency achieved by random agents (ones
who choose via independent coin tosses). It seems that
“panic” and “confusion” (clustering around p � 1

2 ) pre-
vent the agents from achieving a reasonable utilization
of resources. Similarly, a wealthy population, for which
there is no real motivation for adaptation, displays a poor
efficiency. On the other hand, an evolving population
achieves an optimum utilization of its resources when it
receives a (small) positive external reinforcement (that is,
for 0 , Rmax 2 1 ø 1).

(iv) The gene distribution P�p� displays temporal oscil-
lations around p � 1

2 . The smaller the value of the prize-
to-fine ratio, the farther the system is from a steady-state
distribution. This in particular implies that the steady-state
assumption used to analyze the EMG (in the R � 1 case)
[7] is no longer valid for smaller values of R.
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