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Network Topology of a Potential Energy Landscape: A Static Scale-Free Network
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Here we analyze the topology of the network formed by the minima and transition states on the
potential energy landscape of small clusters. We find that this network has both a small-world and scale-
free character. In contrast to other scale-free networks, where the topology results from the dynamics of
the network growth, the potential energy landscape is a static entity. Therefore, a fundamentally different
organizing principle underlies this behavior: The potential energy landscape is highly heterogeneous
with the low-energy minima having large basins of attraction and acting as the highly connected hubs in
the network.
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Energy landscapes have been at the forefront of many of
the recent theoretical developments in our understanding
of biomolecules [1], clusters [2,3] and the glass transition
[4]. For example, this research has provided important new
insights into how proteins fold [5]and the origin of the un-
usual properties of supercooled liquids, such as the distinc-
tion between “strong” and “fragile” liquids [6,7]. There
has also been a surge of interest in modeling complex sys-
tems as networks [8], inspired by Watts and Strogatz’s dis-
covery that many networks behave as “small worlds” [9].
Intriguingly, a diverse range of such networks, e.g., the
World Wide Web [10], the internet [11], scientific collabo-
ration [12], and citation [13] networks, and biochemi-
cal networks [14,15], also have a “scale-free” topology,
where the distribution of the number of connections to each
node, the degree, follows a power law. This topology re-
sults from the dynamics of the network growth in these
systems [16]. Here we draw these two strands of research
together by applying the techniques of network analysis to
probe the global structure of potential energy landscapes
of clusters.

The potential energy landscape is a multidimensional
surface representing the dependence of the potential en-
ergy on the positions of all the atoms of the system. For a
system with many atoms the landscape will have a complex
topography with higher-dimensional analogs of mountain
ranges, valleys, and passes. Although the potential en-
ergy landscape determines the system’s structure, thermo-
dynamics, and dynamics, the nature of this relationship
is complex. A particularly successful means of elucidat-
ing this relationship is the inherent structure approach of
Stillinger and Weber [17], in which the landscape is di-
vided into basins of attraction surrounding each minimum
(see Fig. 1). This partition provides a natural way to de-
scribe the dynamics of the system, because, except at high
temperature, the system spends most of the time vibrating
in the well surrounding a minimum and only occasionally
hops to a different well by passing over a transition state.
The interbasin dynamics can then be represented as a walk
on a network whose nodes correspond to the minima and
where edges link those minimum which are directly con-
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nected by a transition state. Figure 1 provides an illus-
tration of such an inherent structure network (ISN) for a
two-dimensional energy surface.

The ISN should provide the starting point for an energy
landscape view of the global dynamics of a system. In-
deed, as is increasingly being done, it is relatively easy to
calculate the dynamics from this network using a master
equation approach [3,18,19]. However, fundamental ques-
tions about the topology of the ISN have received little
attention. By contrast the global topography of energy
landscapes has been the focus of much research [1,2,5].
To give one example, this emphasis has revealed that when
a landscape is like a “funnel” [5] the system is guided
towards the global minimum, be it the native state of a
protein [5], an ordered nanoparticle [20], or a bulk crys-
tal. However, the topological aspects of this idea re-
main open despite their importance: if the average number
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FIG. 1. (a) A model two-dimensional energy surface. (b) A
contour plot of this surface illustrating the inherent structure
partition of the configuration space into basins of attraction
surrounding minima. The basin boundaries are represented by
the thick lines, and the minima and transition states by points.
(c) The resulting representation of the landscape as a network.
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of steps to reach the global minimum from an arbitrary
starting minimum scales unfavorably with size, the loca-
tion of this structure would become significantly hindered
at large size.

To characterize the topology of the ISN we study small
clusters for which we are able to locate nearly all the
minima and transition states on the potential energy land-
scape [3,21]. The atoms of the cluster interact with a
Lennard-Jones potential, which provides a reasonable de-
scription for rare gas clusters. The numbers of minima
and transition states are expected to increase roughly as
Nmin � eaN and Nts � NeaN , respectively [22,23], where
N is the number of atoms in the cluster. Therefore, the
largest network that we are able to consider is for a 14-atom
cluster for which we have located 4196 minima and 87 219
transition states

Small-world networks have characteristics typical of
both random graphs and lattices. The average separation
between nodes scales logarithmically with network size,
while the network is highly clustered, i.e., any two neigh-
bors of a node are also likely to be connected. From Fig. 2
it is clear that the ISNs for the clusters show both these
features and so are small worlds. The clustering is un-
surprising given that the connections between basins on a
potential energy landscape are based on adjacency in con-
figuration space [24], but to interpret Fig. 2(a) properly we
must take into account the increase in both the dimension
of configuration space and the average degree �k� as the
size of the network increases.

For example, for a hypercubic lattice with a constant
number of lattice points L along each edge and dimen-
sion 3N , the number of lattice points Nlatt scales exponen-
tially with N and the average number of steps between any
two lattice points is N�L 1 1� � �L 1 1� logNlatt�3 logL.
By contrast, if the network behaves as a random graph,
the average separation should scale as logNmin� log�k� ~

logNmin� log�logNmin� because �k� ~ Nts�Nmin ~ N . The
sublogarithmic scaling suggested by Fig. 2(a) points to the
latter scenario. This result is somewhat surprising. In
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FIG. 2. (a) The dependence of the average separation between
nodes (in steps) on the size of the network, Nmin. (b) The size
dependence of the clustering coefficient, c, compared to that for
a random graph, where c is the fraction of the pairs of nodes
with a common neighbor that are also connected [9]. The data
points are for Lennard-Jones clusters with from 7 to 14 atoms.
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Watts and Strogatz’s small-world model the random-graph
character results from the introduction of random links into
the lattice, which can potentially connect up distant nodes,
but there is no obvious equivalent of the random links on
the potential energy landscapes.

If we now examine the distributions for the numbers of
connections for each node we find that as the size of the
cluster increases a clear power-law tail develops, which has
a universal form independent of the cluster size (Fig. 3).
The exponent of the power law, g � 2.78, is similar to
other scale-free networks [25]. The cause of the random-
graph like scaling of the average separation is thus the
scale-free topology of the ISN. The network is extremely
heterogeneous with a few hubs that have a very large num-
ber of connections, but with the majority of nodes only
connected to a relatively small number of other minima.

This is a particularly surprising result because all other
scale-free networks are dynamic in origin. They grow and
change over time, be it on an almost continuous basis as
in the WWW or on evolutionary time scales in the case of
biochemical networks. Even the recently introduced de-
terministic scale-free networks are based on an iterative
growth procedure [26,27]. Furthermore, models of net-
work growth [16,25]and studies on the time evolution of
real networks [28,29]strongly suggest that the heterogene-
ity at the heart of the scale-free topology develops as a
result of new nodes preferentially linking to those nodes
which have many connections, be they much-cited papers
or popular web sites. However, the network associated
with a potential energy landscape is static. It is simply de-
termined by the form of the interatomic interactions and
the number of atoms in the cluster.
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FIG. 3. The cumulative distribution for the number of nodes
that have more than k connections. The curves correspond to
clusters of different sizes, as labeled. An additional straight
line with slope 2�g 2 1�, where g � 2.78, has been plotted
to emphasise the power law tail. In the inset the cumulative
probability distribution for the 12-, 13-, and 14-atom clusters is
plotted against k normalized by its average value �k� to bring
out the universal form of the distribution.
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The source of the heterogeneity in the ISNs is apparent
from Fig. 4, where we see that the degree of a node in-
creases somewhat faster than exponentially as the energy
of the minimum decreases [30]. The low-energy minima
act as the hubs in the network. Thus, for the 14-atom clus-
ter, 76% of the nodes in the network are connected to the
global minimum. To measure the extent of the catchment
basin around a minimum, we can calculate the distance in
configuration space to all the transition states connected
to a minimum. For LJ14 we find that this distance is 2.7
times larger for the global minimum than for the surround-
ing minima. When the multidimensionality of configura-
tion space is taken into account this result suggests that
the hyperarea of this catchment basin is many orders of
magnitude larger than the average. Similarly, it has been
previously found that on average the basin area falls off
approximately exponentially with the energy of a mini-
mum [31].

These results show that the global topology and topog-
raphy of the potential energy landscape are intimately
connected because the deep minima have very large
catchment basins which are connected to lots of smaller
basins around their edges. By contrast, if a potential
energy landscape were flat and all basins of attraction
had the same area the scale-free topology would be lost.
For example, an investigation of the network topology
of the configuration space of a noninteracting lattice
polymer [32] found the connectivity distribution to be a
Gaussian [33].

This contrasting example naturally leads one to ask how
general is the topology that we have found for the Lennard-
Jones clusters. Although such a question can be defini-
tively answered only by similar analyses for a variety of
systems, there is nothing “special” about the Lennard-
Jones potential and so there is no reason why similar be-
havior should not be seen for other materials, as long as
there are no constraints present that would prevent the for-
mation of the high degrees associated with the hubs. A
polymer provides an example of the latter, because the
connectivity of the chain limits the number of transition
states that can surround a minimum. For example, a
similar analysis for Lennard-Jones polymers [34]did not
find a power-law tail to the degree distribution (although
it was still longer than exponential) [35]. There is no
equivalent of many of the transition states for the equiva-
lent Lennard-Jones cluster because they involve the break-
ing of the polymer chain.

The scale-free topology of the ISN is potentially good
news for global optimization, the task of locating the global
minimum. Even though the number of minima increases
exponentially with the size of the system [22], the average
number of steps in the shortest path to the global mini-
mum grows sublinearly with system size. Of course, find-
ing this path is not necessarily easy. Our calculations of
the shortest paths required information on the global struc-
ture of the potential energy landscape, whereas a global
238701-3
optimization algorithm usually takes a step based on only
local information.

Some path finding strategies to efficiently navigate
scale-free networks have been suggested that make use
of the fact that most of the shortest paths pass through
the highly connected hubs [36,37]. In our case the clear
link between the topology and topography of the potential
energy landscape provides an additional advantageous
strategy. A downhill step to a lower-energy minimum is
likely to take one to a minimum that is more connected and
closer to the global minimum. How well obeyed the latter
correlation is, depends upon the global topography of the
potential energy landscape and is a good indicator of the
difficulty of global optimization. Thus, when the landscape
is like a single funnel, global optimization algorithms
can achieve near to the ideal scaling. For example, the
basin-hopping algorithm can locate the global minimum
of the 55-atom Lennard-Jones cluster after on average
less than 150 minimizations when started from a random
configuration, even though there are an estimated 1021

minima [31]. The increasing number of links as the energy
decreases evident in Fig. 4 further adds to the efficacy of
a funnel in guiding the system towards its bottom, and
provides clear evidence of the convergence of pathways
into the hub at the funnel bottom that is often postulated.
By contrast, when an energy landscape has multiple
funnels and there is a tendency to enter a funnel that leads
the system to a low-energy minimum that is far from the
global minimum, global optimization can be very difficult.

The topology of the ISN will of course significantly
affect the dynamics. This connection can be probed for
very small systems where the network can be completely
characterized and the inherent structure dynamics obtained
by a master equation approach. However, this approach
is not practical for the system sizes that are of most
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FIG. 4. The dependence of the degree of a node on the po-
tential energy of the corresponding minimum for the 14-atom
cluster. The data points are for each individual minimum and
the solid line is a binned average.
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interest. Therefore, models of protein folding and the
glass transition usually have to assume a simplified
topology for the interstate dynamics [38,39], or relate
the dynamics to static quantities through phenomeno-
logical equations, such as the Adam-Gibbs equation
which relates the relaxation time in supercooled liquids
to the configurational entropy [40]. To fully unlock the
potential insights from the inherent structure view of the
dynamics, a means of statistically modeling the network
topology from a partial characterization of the potential
energy landscape is therefore needed. Our results could
significantly advance this goal.
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