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We argue that many major features in electronic transport in realistic quantum dots are not explainable
by the usual semiclassical approach, due to the contributions of the quantum-mechanical tunneling of the
electrons through the Kolmogorov-Arnol’d-Moser islands. We show that dynamical tunneling gives rise
to a set of resonances characterized by two quantum numbers, which leads to conductance oscillations
and concentration of wave functions near stable and unstable periodic orbits. Experimental results agree
very well with our theoretical predictions, indicating that tunneling has to be taken into account to
understand the physics of transport in generic nanostructures.
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Electronic transport in semiconductor nanostructures is
a frontier problem in condensed matter physics and non-
linear science. On submicron scales, quantum interference
gives rise to such phenomena as conductance fluctuations
and th eAharonov-Bohm effect [1,2]. The aim of this
Letter is to report our finding concerning the fundamental
role played by dynamical tunneling [3] in conductance
fluctuations in realistic quantum dots. We present strong
evidence that dynamical tunneling through regular phase-
space structures, such as Kolmogorov-Arnold-Moser
(KAM) islands, fundamentally determines the character-
istics of conductance fluctuations in typical quantum dots.
Theoretical analysis based on the tunneling mechanism
gives quantitative predictions (the average frequency of
the fluctuations) in excellent agreement with experimental
measurements. To our knowledge, this is the first time
that the major characteristics of experimentally observable
conductance fluctuations in quantum dots are explained in
a quantitative way, indicating the fundamental importance
of dynamical tunneling in the transport dynamics of
electrons in semiconductor nanostructures.

An important class of nanostructures is the two-
dimensional electron gas (2DEG) quantum dots [1,2]. In
these systems, electrons are restricted to a plane near the
interface between two different semiconductors. Applying
voltage to contact gates deposited above the junction
allows for the construction of submicron-sized 2D cavities
in which electrons are scattered ballistically. Furthermore,
in 2DEGs the mean-free path and coherence lengths are
typically much larger than the cavity length at milli-Kelvin
temperatures. For low currents, the transport character-
istics of the quantum dot are determined by the approxi-
mately ballistic and coherent motion of electrons in the
cavity [1,2]. One can therefore expect that the classical
electron dynamics (regular or chaotic) will play a major
role in the transport. A popular approach is to assume that
the underlying classical dynamics is completely chaotic
(or hyperbolic), and then use the random matrix theory
(RMT) [4] and similar approaches, which predict univer-
sal conductance fluctuations with a Lorentzian correlation
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function [5]. A fundamental difficulty with RMT-like
approaches is that typical systems have a nonhyperbolic
dynamics, with regions of chaotic scattering coexisting
with nonescaping KAM islands surrounding stable or-
bits in phase space. Many experimental results have
accumulated, suggesting that hyperbolicity is an unusual
dynamical feature in 2DEG quantum dots [6–11]. Thus,
for typical dots, the observed properties of the transport
simply cannot be explained by RMT-like approaches.
In these systems, the conductance shows strong regular
fluctuations as the gate voltage (or the magnetic field) is
varied, as opposed to the random behavior predicted by
RMT-like theories [8,12]. An example of the measured
fluctuations is shown in the lower-left inset of Fig. 1.
These fluctuations have been found to be associated with
high concentrations of wave functions (“scarring”) around

FIG. 1. Poincaré section for Vg � 20.6 V, with E � EF �
14.3 mV. The section is taken along the dotted line. y is the
x component of the velocity, and is given in units of the Fermi
velocity. The “chaotic sea” surrounding the island is the plot
of one single trajectory that stays a long time near the island
before escaping. The phase-space area of the island is about h̄.
The upper-right inset shows the electrostatic potential profile (as
a grey scale plot) of the dot for a gate voltage of 20.6 V. The
lower-left inset shows the measured conductance fluctuations
observed by varying the gate voltage. See Ref. [8] for further
details.
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certain periodic orbits within the dot. In this Letter, we
argue that, to explain these results, it is necessary to take
into account the quantum-mechanical tunneling ofelectrons
through the KAM islands (dynamical tunneling), which
corresponds to classically forbidden trajectories that are
not taken into account in the usual semiclassical approach.
We show that resonant features in the conductance cor-
respond to the values of the external parameter (the gate
voltage) for which the semiclassical quantization condition
is satisfied for periodic orbits with low period, including
stable orbits within the KAM islands. These features cor-
respond to tunneling resonances neglected by usual semi-
classical approaches. We compare the predictions of our
theory to the results of a recent experiment [8], in which
a gate-voltage variation was used to generate oscillations
in the conductance of GaAs�AlGaAs quantum dots. In a
fully quantum-mechanical analysis of this behavior, the
conductance oscillations were found to be correlated to
the excitation of specific wave function concentrations
in transport. In this Letter, we provide a semiclassical
description of this effect, and show that the periods of the
experimentally measured conductance oscillations agree
extremely well with those predicted by our theory.

Although our theory can be applied to any 2DEG quan-
tum dots, we focus on a specific system for which ex-
perimental data are available [8]. The self-consistently
computed profile of this dot is shown in the upper-right
inset of Fig. 1 (for more details on this, see [8]). For the
range of voltages we have studied, the shape remains basi-
cally the one shown in the inset of Fig. 1. For higher volt-
ages (in modulus), the potential is more confining, and the
two openings become smaller as jV j increases. The low-
temperature electron mobility and density of this dot are
4 3 1015 m22 and 70 m2�V s [8], respectively, with a cor-
responding Fermi energy of 14.3 meV. Each gate voltage
corresponds to a different shape of the electrostatic poten-
tial. This potential is computed self-consistently on a grid
using a Poisson solver for several gate voltages; for points
not on the grid, it is calculated using cubic spline interpo-
lation [13]. The transmission of a conducting electron can
be described as a scattering process: The electron enters
the dot by one lead, bounces around for a while, and then
leaves. To study the classical dynamics of the scattering,
we simulate the motion of the electron on the previously
calculated potentials, with the electron at the Fermi energy.
We use a Poincaré section to visualize the dynamics. For
hyperbolic dynamics, all orbits are unstable, and all initial
conditions escape the dot in a finite time (except for a set
of null measure). The Poincaré section of almost every
initial condition consists then of a finite number of points,
and there are no stable orbits or KAM islands in phase
space. From the results shown in Fig. 1, however, we see
that the dynamics is clearly nonhyperbolic, with a large
KAM island dominating the phase space. This island is
centered on a period-1 orbit that bounces back and forth
vertically at the center of the dot, called the bouncing-ball
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orbit. Clearly, RMT cannot be applied to this system.
The features of Fig. 1 appear to be typical for most quan-
tum dots.

There are some important theoretical works on the semi-
classics of nonhyperbolic systems [9–11,14], but they also
predict stochastic conductance fluctuations (with different
statistical properties than in the hyperbolic case), and fail to
predict the regular fluctuations seen in experiments. This
is because the usual semiclassical theory considers only
interference between classically allowed trajectories, and,
hence, ignores the possibility of electron tunneling into
the KAM island (corresponding to diffraction in optics).
This effect is negligible only if the electron de Broglie
wavelength le is much smaller than the cavity size. For
dots with a typical size of 1 mm, le is typically one-tenth
of the cavity length, and therefore tunneling cannot be ne-
glected, as we will show. On the other hand, le is small
enough so that some important semiclassical concepts such
as the Bohr-Sommerfeld quantization of periodic orbits can
still be applied. Conductance measurements reveal that
these regular oscillations have only a few main frequen-
cies; this is shown by the Fourier analysis of the fluctua-
tions, which exhibits a few well-defined peaks [8]. We
can now argue that these peaks are due to dynamical tun-
neling [15]: There is a probability that an incoming elec-
tron tunnels inside the KAM island. If the electron energy
and the system parameters are such that the semiclassical
quantization condition (see below) is satisfied for a low-
period stable periodic orbit within the island, there is a
resonance with a sharp decrease in the transmission. As
the system’s parameters change, these resonances occur
with a period given by the position of the peaks in the
Fourier transform. These arguments are made quantitative
below. We note that dynamical tunneling is of great impor-
tance in many fields, in particular in cold-atom physics [3].
Recent studies have demonstrated a mixed phase space in
the atomic optical billiard [16], so the results of our study
may be important for such systems.

Because KAM separatrices are classically impenetrable,
the classical dynamics restricted to the island shown in
Fig. 1 is that of a closed system. For closed systems, it
is well known from the expansion of the Gutzwiller trace
formula that each stable orbit generates a series of delta
functions in the density of states, at energies for which the
resonance condition holds [17,18]:
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p ? dq is the action along the periodic or-

bit in units of Planck’s quantum, v is the stability angle
of the orbit, and l is the Maslov index [4,17]; m, n �
0, 1, 2, . . . . Our system is open, however. Just as an incom-
ing electron can tunnel in, an electron within the island is
in a metastable state, and may “decay” by escaping. This
causes the peaks in the density of states to broaden, and
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their width is inversely proportional to the average time it
takes for an electron to tunnel out of the island. If this
time is not too short, the peaks will be sharp enough to be
resolved, and their positions are given by Eq. (1).

Consider first the case m � 0. Note that n is the longi-
tudinal quantum number, and counts the number of nodes
in the “eigenfunction” along the orbit (of course this is
not a true eigenfunction, since the system is metastable).
Within the island of Fig. 1, there are infinitely many peri-
odic orbits, but only the lowest-period ones are expected
to be resolved (high-period orbits generate peaks that are
too closely spaced to be resolved, even more so with the
broadening of the levels caused by the quantum metastabil-
ity of the system). The most important orbit in the island is
the period-1 bouncing-ball orbit corresponding to the fixed
point in the center of the island in Fig. 1. We calculate nu-
merically Seff in Eq. (1) as a function of the gate voltage
for this island, and compare to the experimental results.
The result is shown in Fig. 2, and we see that the points
fall reasonably well on a straight line, which corresponds to
a periodic recurrence of the resonance. Since a resonance
happens each time Seff goes through an integer, the (abso-
lute value of) the slope of the straight line gives the semi-
classical prediction for the frequency of the conductance
oscillations. We find this frequency to be 16.4 V21, in re-
markable agreement with the measured value of 15 V21

[8]. This shows that this peak corresponds to recurring
tunneling resonances, and cannot be explained by the usual

FIG. 2. Effective action versus the gate voltage, for the stable
(circles) and the unstable (squares) orbits. The lower inset shows
a pair of closely spaced concentrated wave functions correspond-
ing to the stable bouncing-ball orbit (left and center images),
and a scar due to the unstable orbit (right image) along with its
corresponding classical orbit, obtained by a full quantum-me-
chanical simulation of the open system. A sequence of concen-
trations of wave functions around some classical periodic orbits,
as the gate voltage changes, is also shown, where (a)–(f) corre-
spond to Vg � 20.928 V, Vg � 20.862 V, Vg � 20.807 V,
Vg � 20.755 V, Vg � 20.700 V, and Vg � 20.640 V, re-
spectively.
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semiclassical theory, where tunneling is ignored. This is
further reinforced by a fully quantum mechanical simula-
tion of the open system [8]. Figure 2 shows a sequence
of concentrations of wave functions (the top six insets),
computed from the results of the simulation following the
technique shown in [19], each corresponding to a different
value of the gate voltage. The recurrence frequency of the
concentrated wave function was determined to be 16 V21,
in agreement with our semiclassical prediction and with
the experimental result. Since this orbit is classically inac-
cessible from the outside, this figure gives us more direct
evidence of dynamical tunneling.

We now consider the general case, when m is any posi-
tive integer. The second term in Seff (1) represents the
quantization of the component of the motion transversal to
the periodic orbit. This means that for each n there is actu-
ally a (theoretically infinite) set of resonances, labeled by
m, similar to a vibrational band in a molecule. Assuming
that Seff changes linearly with the gate voltage Vg (which,
as Fig. 2 shows, is a good approximation), we can estimate
the separation DVg between two resonances with consecu-
tive transversal quantum numbers: DVg � v

2pjdSeff�dVg j
,

where it is assumed that v does not change much be-
tween the two resonances. Although v depends on n,
its values are found (numerically) to lie in the range be-
tween 1 and 2 rad. Using the value of jdSeff�dVgj derived
from Fig. 2, we obtain that DVg is between 1 3 1022 V
and 2 3 1022 V. Just as n counts the number of nodes
along the orbit, m counts the number of nodes across it,
so we expect from all this that, for each n, there is a set
of concentrated wave functions having 0, 1, 2, . . . transver-
sal nodes, separated by a gate voltage interval of DVg.
Such recurring pairs of concentrated wave functions were
observed in the quantum-mechanical simulation for the
bouncing-ball orbit, separated by a gate voltage difference
of about 2 3 1022 V, which agrees well with our pre-
diction. One pair is shown in Fig. 2 (the lower-left and
middle insets), and we see that they correspond to m � 0
and m � 1. They are also found for the other values of
n, and they recur at the same period, as predicted. We
stress that this phenomenon cannot be explained without
tunneling, since it requires electrons to access the stable
orbit, which is classically (and also semiclassically) for-
bidden. The concentrated wave function corresponding to
higher values of m (m � 2, 3, . . .) are not resolved by the
simulation, presumably because they have a short lifetime;
from Fig. 2, we see that the m � 1 wave function is quite
“fat,” and as m increases it becomes even more so, since
the number of nodes increases. For m . 1, we expect the
wave function to have a large overlap with that outside of
the island, which corresponds to orbits that escape quickly,
thus making these resonances very short lived, and so
unresolved.

Although we focused on the stable orbits, unstable or-
bits are also present in the system and contribute to the
density of states. The concentrated wave function (scar)
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corresponding to the main unstable orbit is displayed in
the lower-right inset of Fig. 2. A classical trajectory analy-
sis suggests the orbit giving rise to this whispering-gallery
scar is guided by the soft walls around the perimeter of the
lower section of the dot, bouncing from the upper wall at
two points, located close to the two lead openings. This
classical orbit is depicted in the same inset. The resonant
condition for unstable periodic orbits is given by Eq. (1)
without the v term [17]. This means that unstable orbits
do not give rise to the subband of resonances associated
with m. In the Fourier transform of the conductance oscil-
lations, a peak is observed at Vg � 37 V, corresponding
to an unstable periodic orbit of period 1. Figure 2 shows a
plot of Seff versus Vg for this orbit, and from the slope we
get a recurrence frequency of 36.3 V21, again in very good
agreement with the experimental result. The concentrated
wave functions related to these resonances are seen in the
quantum-mechanical simulation, but no subband is seen,
confirming our predictions. The other main periodicities
found in the conductance correspond to harmonics of the
main stable and unstable resonances studied above. Note
that, in [11], isolated resonances are predicted to arise from
the chaotic part of the phase space outside the islands (see
Fig. 1), but these can be detected for smaller values of h̄
only, i.e., larger quantum dots [20].

In summary, we argue that the usual semiclassical ap-
proach is not enough to explain the transport characteristics
of typical semiconductor nanostructures, and the quantum-
mechanical tunneling of the electron through KAM islands
has to be taken into account. Tunneling resonances caused
by low-period stable and unstable periodic orbits within the
KAM islands cause regular oscillations of the conductance.
Such oscillations have been observed experimentally, and
they are very well predicted by our theory. These results
are expected to hold for any mesoscopic system. Our gen-
eral standpoint is that tunneling plays a fundamental role
in mesoscopic transport [21]. While periodic oscillations
dominate the conductance of the small dot that we study
here, in other experimental work we have shown that the
periodic nature of the fluctuations becomes steadily ob-
scured as the dot size is increased [22]. Experimental stud-
ies of such larger dots have therefore typically focused on
a discussion of the statistical properties of the fluctuations,
emphasizing the characteristics of their nonperiodic com-
ponents.
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