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Mechanisms of Spin-Polarized Current-Driven Magnetization Switching
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The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied
by including exchange interaction between local moments and spin accumulation of conduction electrons.
It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert
equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accu-
mulation and have comparable magnitudes.
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The concept of switching the orientation of a magnetic
layer of a multilayered structure by the current perpendicu-
lar to the layers was introduced by Slonczewski [1] and
Berger [2], and has been followed up by others [3]. The
central idea is of a spin transfer from a polarized current
to the magnetization of the layer. An alternate mechanism
of current induced switching was put forth by Heide et
al. [4] in which the current across the magnetically inho-
mogeneous multilayer produces spin accumulation which
establishes an energy preference for a parallel or antipar-
allel alignment of the moments of the magnetic layers;
this magnetic “coupling” was posited to produce switch-
ing. Recent experiments have reliably demonstrated that
the magnetization of a magnetic layered structure is in-
deed switched back and forth by an applied current [5–7].

In this Letter, we present a spin transfer model in which
we solve for the equation of motion of the spin accumu-
lation in order to derive the torque acting on the back-
ground magnetization. The salient difference between our
model and previous treatments is that we include the ef-
fects of spin diffusion which have been found to be im-
portant in understanding magnetoresistance of magnetic
multilayers for current perpendicular to the plane of the
layers (CPP-MR) [8–10]. This allows us to express our
results in terms of the same parameters used to interpret
CPP-MR. With respect to the model of Heide et al. [4]
our effect arises from transverse spin accumulation, i.e.,
perpendicular to the local magnetization, and not from the
longitudinal spin accumulation.

Let us consider a magnetic multilayer with the current
perpendicular to the plane of the layer (defined as x direc-
tion). The linear response of the current to the electrical
field can be written as a spinor form,

;̂�x� � ĈE�x� 2 D̂
≠n̂
≠x

, (1)
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where E�x� is the electric field, ;̂, Ĉ, D̂, and n̂ are the
2 3 2 matrices representing the current, the conductivity,
the diffusion constant, and the accumulation at a given
position. The diffusion constant and the conductivity are
related via the Einstein relation Ĉ � e2N̂�eF�D̂ for a de-
generate metal, where N̂�eF� is the density of states at the
Fermi level. In general, one can express these matrices in
terms of the Pauli spin matrix s ,

Ĉ � C0Î 1 s ? C , (2)

D̂ � D0Î 1 s ? D , (3)

and

n̂ � n0Î 1 s ? m , (4)

where 2n0 is the charge accumulation and m is the spin
accumulation. By placing Eqs. (2)–(4) into (1), we rewrite
the linear response in terms of the electric current je and
magnetization current jm as

je � Re�Tr;̂� � 2C0E�x� 2 2D0
≠n0

≠x
2 2D ?

≠m
≠x

(5)

and

jm � Re Tr�s ;̂� � 2CE�x� 2 2D
≠n0

≠x
2 2D0

≠m
≠x

.

(6)

It is noted that we have chosen the unit e � mB � 1 for the
notation convenience so that the electrical current and the
magnetization current have the same unit. For a transition
ferromagnet, one defines the spin polarization parameter b
as C � bC0Md , where Md is the unit vector to represent
the direction of the local magnetization. Similarly, we can
introduce a spin polarization b0 for the diffusion constant
D � b 0D0Md. These two polarization parameters are not
necessarily the same, i.e., when the density of states are
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different for spin up and down electrons, b fi b0. By in-
serting these relations into Eqs. (5) and (6), and eliminat-
ing the electric field and charge density, we obtain

jm � bjeMd 2 2D0

∑
≠m
≠x

2 bb0Md

µ
Md ?

≠m
≠x

∂∏
,

(7)

where we have dropped an uninteresting term proportional
to the derivative of the charge accumulation ≠n0�≠x. The
diffusion term in this equation is strictly valid only when
the time for momentum relaxation t is shorter than the
characteristic time for the motion of the transverse com-
ponent of the spin accumulation which is of the order of
h�J. The opposite limit, i.e., the ballistic regime for the
transverse component, will be addressed in a forthcoming
publication; it leads to another expression for the length
scale lJ introduced in Eq. (10) below.

We now describe the equations of motion for the spin
accumulation and local magnetization when we turn on
the interaction between the spin accumulation and the local
moment via the contact interaction,

Hint � 2Jm ? Md . (8)

With this interaction, the equation of motion for the spin
accumulation is

dm
dt

1 �J�h̄�m 3 Md � 2
m
tsf

, (9)

where tsf is the spin-flip relaxation time of the conduction
electron. The second term on the left hand side represents
the processional motion of the accumulation due to the
sd interaction when the magnetization directions of the
spin accumulation and the local moments are not parallel.
Since the conduction electrons carry a spin current given
by Eq. (7), we replace dm

dt by ≠m
≠t 1

≠jm

≠x . By using Eq. (7),
we find

1
2D0

≠m
≠t

�
≠2m
≠x2 2 bb0Md

µ
Md ?

≠2m
≠x2

∂

2
m

l
2
sf

2
m 3 Md

l
2
J

, (10)

where we have defined lsf �
p

2D0tsf and lJ �p
2hD0�J. As pointed out just after Eq. (7), this expres-

sion for the length scale lJ holds only when t , h�J.
In the opposite limit the length scale is yFh�J. For
transition-metal ferromagnets t and h�J have the same
order of magnitude.

The equation of motion for the local magnetization is

dMd

dt
� 2g0Md 3 �He 1 Jm� 1 aMd 3

dMd

dt
,

(11)

where g0 is the gyromagnetic ratio, He is the magnetic
field including the contributions from the external field,
anisotropy and magnetostatic field, the additional effective
field Jm is due to coupling between the local moment
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and the spin accumulation, and the last term is the Gilbert
damping term.

To solve for the dynamics of the spin accumulation and
the local moment, we need to simultaneously determine
them using Eqs. (10) and (11). The time scales are very
different for the spin accumulation and the local moments.
The characteristic time scales of the former are of the order
of tsf and h�J, see Eq. (9), i.e., of the order of picosec-
onds (10212 sec). For the local moment, the time scale
is g

21
0 �He 1 Jm��21. For a magnetic field of the order

of 0.1 T, this time scale is of the order of nanoseconds.
Therefore, as long as one is interested in the magnetiza-
tion process of the local moments, one can always treat the
spin accumulation in the limit of long times. The two dy-
namic equations are then simply decoupled: we first solve
Eq. (10) with fixed local moments (independent of time)
and set the left hand side of Eq. (10) to zero. Once the spin
accumulation is obtained, we substitute it into Eq. (11) to
solve the dynamics of the local moments.

Before we proceed to solve for the stationary solution
of Eq. (10), let us first discuss the general features derived
from Eq. (10). We separate the spin accumulation into
longitudinal (parallel to the local moment) and transverse
(perpendicular to the local moment) modes. Equation (10)
can now be written as

≠2mjj

≠x2 2
mjj

l
2
sdl

� 0 , (12)

where lsdl �
p

1 2 bb0 lsf, and

≠2m�

≠x2 2
m�

l
2
sf

2
m� 3 Md

l
2
J

� 0 . (13)

The longitudinal spin accumulation mjj decays at the
length scale of the spin diffusion length lsdl while the
transverse spin accumulation m� decays as lJ . The spin
diffusion length lsdl has been measured to be about 60 nm
in Co [11]. We estimate lJ by taking the typical diffusion
constant of a metal to be 1023 (m2�s) and J � 0.1 0.4
(eV) so that lJ is about 1.2 to 2.4 nm. Thus, the trans-
verse spin accumulation has a much shorter length scale
compared to the longitudinal one.

Before we apply Eqs. (12) and (13) to a multilayer struc-
ture, we take a look at the influence of the spin accumu-
lation on the local moment. As seen from Eq. (11), the
longitudinal spin accumulation has no effect on the local
moment. We may rewrite Eq. (11) in terms of the trans-
verse spin accumulation only,

dMd

dt
� 2g0Md 3 �He 1 Jm�� 1 aMd 3

dMd

dt
.

(14)

To discuss the transverse accumulation we introduce a vec-
tor A such that Jm� � A 3 Md . If one considers a sys-
tem with two ferromagnetic layers whose magnetization
directions are not parallel to each other, the spin accu-
mulation at one layer depends on the orientation of the
other. Let us suppose that the above equation is used for
236601-2
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the layer F1, i.e., denote Md � M
�1�
d . The magnetization

of the other layer is labeled as M
�2�
d . Without loss of gen-

erality, we can write the two components of the accumu-
lation in the plane transverse to M

�1�
d as Jm� � aM

�2�
d 3

M
�1�
d 1 b�M�1�

d 3 M
�2�
d � 3 M

�1�
d , where a and b are de-

termined by geometric details of the multilayer. Placing
this into Eq. (14), we find

dM
�1�
d

dt
� 2g0M

�1�
d 3 �He 1 bM

�2�
d � 2 g0aM

�1�
d

3 �M�2�
d 3 M

�1�
d � 1 aM

�1�
d 3

dM
�1�
d

dt
. (15)

Thus the transverse spin accumulation produces two
effects simultaneously: the term bM

�1�
d 3 bM

�2�
d is the

torque due to an effective field bM
�2�
d and the other is

aM�1�
d 3 �M�2�

d 3 M�1�
d � which is called the “spin torque.”

Both terms lead to corrections to the original Landau-
Lifshitz-Gilbert equation. It has been shown that both
terms are capable to switch the magnetic moments [12].
Note the effective field introduced here looks as if it arises
from the current induced coupling named NEXI; however,
it is different as NEXI was attributed to the longitudinal
component of the spin accumulation [4]. In contrast we
have shown that only the transverse spin accumulation
must be taken into account and that the longitudinal accu-
mulation does not produce any effect on the motion of local
moments. An even more striking difference is Heide’s
finding that “the presence of a second ferromagnetic layer
is not necessary.” This is because his longitudinal accumu-
lation exists for a single F layer, while a second F layer
with tilted magnetization is required for transverse ac-
cumulation and for our mechanism. It is notable that
the “spin torque” term, first introduced by Slonczewski,
appears on an equal footing with the torque due to the
effective field bM

�2�
d as both are related to the transverse

spin accumulation.
We now explicitly verify that the solution of the trans-

verse accumulation m� indeed has our proposed general
form and we quantitatively determine the magnitude of
the effective field (proportional to b term) and the “spin
torque” (proportional to a term) entering Eq. (15). To ob-
tain a physically transparent solution of the spin accumu-
lation, we choose an oversimplified case to perform our
calculation so that the effective field and spin torque can
be analytically derived. We consider a system consisting
of a very thick ferromagnetic layer which is assumed to
be pinned, a spacer layer which is infinitely thin so that
the spin current is conserved across the layer when there
is no spin flip scattering in this region, and a thin ferro-
magnetic layer backed by an ideal paramagnetic layer. In
addition we make our calculation simpler by neglecting
spin-dependent reflection at the interfaces. In such a sys-
tem, we look for the solution of the spin accumulation in
the thin F1 layer whose magnetization direction is at the
positive z direction. The magnetization direction of the
236601-3
pinned layer is M
�2�
d � cosuez 2 sinuey where u is the

angle between M
�2�
d and M

�1�
d � ez . From Eqs. (12) and

(13), and by assuming the same lsdl for the thin magnetic
layer, F1, as for the nonmagnetic layer which backs it, we
write the solution for the F1 layer as

mz�x� � G1 exp�2x�lsdl� , (16)

mx�x� � G2 exp�2x�l1� 1 G3 exp�2x�l2� , (17)

my�x� � 2iG2 exp�2x�l1� 1 iG3 exp�2x�l2� , (18)

where l21
7 �

q
�1�l

2
sf� 6 �i�l

2
J �. To determine the con-

stants of integration, we assume the thick magnetic layer
F2 is half metallic so that the current is fully spin polarized
and we demand that the spin current is continuous across
F2�N�F1 interface [13]; we find

bje 2 2D0�1 2 bb0�
µ
2

G1

lsdl

∂
� je cosu , (19)

22D0

µ
G2

l1

1
G3

l2

∂
� 0 , (20)

and

22D0�2i�
µ
2

G2

l1

1
G3

l2

∂
� 2je sinu . (21)

Thus we determine the constants to be

G1 � 2
jelsdl�b 2 cosu�

2D0�1 2 bb0�
, (22)

G2 �
jel1 sinu

4iD0
, (23)

and

G3 � 2
jel2 sinu

4iD0
. (24)

Therefore, we find the transverse spin accumulation

m� � 2

µ
je

2D0

∂
�Im�l1e2x�l1�M�2�

d 1 Re�l1e2x�l1 �

3 �M�2�
d 3 M

�1�
d �� 3 M

�1�
d , (25)

where we have used 2 sinuex � M
�2�
d 3 M

�1�
d and sinu 3

ey � �M�2�
d 3 M

�1�
d � 3 M

�1�
d . We immediately see that the

form of the spin accumulation given above is precisely the
form we used in deriving Eq. (15). To obtain the coeffi-
cients a and b entering Eq. (15) we average this spin ac-
cumulation over 0 # x # tF where tF is the thickness of
the F1 layer and find

a � 2
Jje

2D0tF
Im�l2

1�1 2 e2tF�l1�� (26)

and

b �
Jje

2D0tF
Re�l2

1�1 2 e2tF�l1 �� . (27)

It is noted that both a and b change sign under time
reversal. The former agrees with that found in [1–3], while
the latter has not been considered by these authors. To
236601-3
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estimate a and b, we take the limit lsf ¿ lJ in which
case l1 � �1 1 i�lJ�

p
2. By placing this into Eqs. (26)

and (27), we find

a � 2
hjea3

0p
2 emBlJ

µ
1 2 cosje2j

j

∂
(28)

and

b �
hjea3

0p
2 emBlJ

µ
sinje2j

j

∂
, (29)

where j � tF��
p

2 lJ�, a0 is the lattice constant, and we
have reinserted the electric charge and Bohr magneton so
that a and b have units of a magnetic field. If we take lJ �
20 Å, a0 � 2 Å, je � 1011 A�m2, we find a � 21056
(Oe) and b � 457 (Oe) for a typical experiment with tF �
25 Å.

In conclusion, we have found that by considering the ex-
change forces between the conduction electron spin and the
background magnetization for the spin current perpendicu-
lar to the layers of a magnetic multilayer there exists the ef-
fective field and torque, both of which contribute to current
driven reversal of the magnetization. We treat both terms
on an equal footing and demonstrate that they have a com-
mon origin. Our solution differs in two important aspects
from previous work: we find the longitudinal spin accumu-
lation does not play a role in the switching, and the spin
torque, as well as the effective field, arises from a region in
the magnetic layer within �lJ of the interface. Therefore,
in the diffusive regime, the decay length in our theory is
related neither to the phase of the wave function [1,2], nor
to the spin diffusion length as in the effective field concept
of switching [4].
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