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Phonon Softening in Metallic Nanotubes by a Peierls-like Mechanism
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The radial dependency of the vibrational frequencies of single-wall carbon nanotubes in the G band
�1500 1600 cm21� is studied by density functional theory. In metallic nanotubes, a mode with A1

symmetry is found to be significantly softer than the corresponding mode in insulating tubes or graphite.
The mechanism that leads to the mode softening is explored. It is reminiscent of the driving force
inducing Peierls distortions. At ambient temperature, the energy gained by opening the gap is, however,
not sufficient for a static lattice distortion. Instead the corresponding vibrational frequency is lowered.
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The discovery that a graphite layer can be rolled up to
form nanoscaled tubes [1] has attracted great interest in
the experimental and theoretical materials science com-
munity. On one side, such nanotubes (NT’s) might aid
to build nanoscaled mechanical or electronic devices (e.g.,
[2–4]). On the other hand, one-dimensional metallic wires
exhibit new —previously unstudied —physical properties,
such as superconductivity in low dimension [5], uncom-
mon magnetic properties [6,7], strong tendency towards
symmetry reduction at zero temperature [8–10], or pecu-
liar phonon-electron coupling mechanisms [10,11]. Our
study concentrates on the latter point, i.e., the coupling of
the continuum states around the Fermi level to a particu-
lar phonon mode. The mechanism studied here is found
to be similar to the well-known Peierls mechanism [12],
but differs insofar as no increase in the translational pe-
riod is involved (compare also Ref. [10]). In addition, the
electron-phonon coupling is not sufficiently strong to al-
low the gap to open at ambient temperatures. Instead, the
gap widens and closes periodically, when the atoms of the
tube oscillate back and forth according to this particular
phonon mode, and as a result the mode is found to be sig-
nificantly softer than the corresponding mode in graphite.
Since the mode does not cause an increase of the transla-
tional period, it corresponds to a G centered phonon, which
is directly observable in Raman spectroscopy. Therefore,
the comparison of the Raman spectra of insulating tubes
(without mode softening) with those of metallic tubes of-
fers a direct experimental view of this coupling mechanism
and allows one to validate the theoretical picture.

This work was initiated by a remarkable experimen-
tal observation. In Raman spectroscopy, one particular
mode exhibits a Breit-Wigner-Fano (BWF) line shape,
which is usually an indication of a coupling to continuum
states. The position of the BWF line exhibits a signifi-
cant radius dependency, with frequencies varying between
1547 cm21, for NT’s with an average diameter of d �
15 Å, and 1530 cm21, for d � 8.5 Å [13]. Recent experi-
mental studies suggest that the mode might correspond to
an optic phonon with A1 symmetry (i.e., totally symmetric
in the circumferential direction), but the experimental evi-
dence is only circumstantial [13]. The precise mechanism
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driving this softening is as yet unknown and will be deter-
mined in this paper. Additionally, the radial dependency
of other phonon modes in the G band will be discussed.

To investigate the vibrational properties of NT’s we per-
formed an ab initio density functional study in the local
density approximation employing a plane wave basis set.
The Kohn-Sham equations were solved using the Vienna
ab initio simulation package [14], and the electron-ion in-
teraction was described by the projector augmented-wave
(PAW) method [15]. The study was performed with a rela-
tively soft carbon PAW potential at an energy cutoff of
250 eV. Calculations for selected cases using a very ac-
curate potential yielded identical results. The correct sam-
pling of the electronic states in the vicinity of the Fermi
energy, eF , requires particular attention, since these states
couple to the aforementioned mode. For zigzag tubes, 33
k points with the coordinates 2pn��64a�, n � 0, . . . , 32
were applied, and, for armchair tubes, 57 points were
used, resulting in roughly similar k-point densities (a is the
translational period of the NT). Additionally, the eigen-
states were broadened (smeared) by 0.1 eV to make the
density of states smooth and continuous around the Fermi
level [16]. The calculations exhibited a fairly large de-
pendency on the applied width and k-point sampling, and
the present setup was chosen, since it yields a reasonable
compromise between computational demands and accu-
racy �65 cm21�.

The phonon frequencies were evaluated by displacing a
single atom in the primitive unit cell of the NT and di-
agonalizing the resulting matrix of the symmetrized force
constants [17,18]. This approach yields exact frequencies
at the G point only; results for the dispersion relations will
be presented elsewhere [18]. In the following, we will
refer to these results as the “ab initio” results. Addition-
ally, the full phonon dispersion relation of a single layer of
graphite was calculated [18]. An important finding of this
calculation is that the theoretical frequency for the lon-
gitudinal optic mode at G is roughly 1% larger than in
the experiment, an error that has to be taken into account,
when the theoretical results are compared to experiment.
The resulting phonon dispersion relation of graphite was
used in a simple zone-folding calculation to estimate the
© 2002 The American Physical Society 235506-1
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vibrational frequencies of NT’s (“zone folding” in the
following) [19,20]. A comparison of these zone-folding
results with the ab initio results allows us to access system-
atically the effects of curvature on the phonon frequencies.

Our main results are presented in Fig. 1, where the
zone-folding predictions and the ab initio calculations and
experiments are shown by lines and symbols, respectively
[21,22]. Deviations between the symbols and lines are a
consequence of the modification of the interatomic force
constants by wrapping (e.g., curvature). Zone folding pre-
dicts a single A1 mode, since the longitudinal optic and
shear horizontal modes are identical at the G point in
graphite. Additionally, zone folding shows a small split-
ting between the longitudinal and transversal E1 modes,
and a larger splitting between the two E2 modes [20].
Since our force constants lead to a rather strong increase of
the longitudinal optic frequency from G to M in graphite
(overbending), the average frequency is higher than for
graphite.

The full ab initio calculations show a similar behavior,
but some details are clearly different. Generally, the exact
results are lower then the zone-folding values. The soften-
ing is explained by the fact that curvature weakens the p

contribution to the bonds in the circumferential direction,
which also explains why the A1�T� mode is affected
most strongly by curvature, whereas the A1�L� mode is
essentially radius independent in insulating tubes. For di-
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FIG. 1. Phonon frequencies of �n, 0� zigzag, �n, n� armchair
tubes and the �12, 6� chiral tube in the G band calculated by
ab initio density functional theory (symbols) and zone folding
(lines). Phonons are characterized by their symmetry and the
direction of vibration L (longitudinal)— parallel to the tube axis,
T (transversal)—perpendicular to the tube axis. The lower axis
and upper axis show the diameter and the index for zigzag tubes
�n, 0�, respectively. Experimental results for the frequency of
the BWF line from Refs. [21,22] are shown by open and filled
diamonds. Zigzag �n, 0� tubes with n fi 3m are insulating; all
other tubes are metallic.
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ameters at about 14 Å, the E2 modes (squares at approxi-
mately 1613 cm21 and 1570 cm21) are symmetrically
split by 22 cm21 with respect to the central graphite
frequency vg � 1595 cm21 (theory). Since curvature
shifts the E1�T� mode to lower values, the frequencies of
the E1�T� and A1�L� mode (open triangles and asterisks)
almost coincide for insulating tubes and are located at
about 1597 cm21, a little bit higher than the theoretical
central G mode of graphite. The E1�L� and A1�T �
modes (filled triangles and open circles) also have rather
similar frequencies and are found at roughly 1580 cm21,
i.e., 20 cm21 lower than the E1�T � and A1�L� modes.
Experimentally, it is generally agreed that there are at
least two characteristic sets of frequencies in the G band,
and that both sets contain E1 and A1 modes [20,22–24].
In a recent polarized Raman study of Jorio et al., one E1
and one A1 mode were observed at about 1590 cm21,
and another set of E1 and A1 modes was measured at
1567 cm21, in good agreement with our data [23]. The
agreement with recent micro-Raman data of Jorio et al. is
also reasonable for insulating tubes, although theory
predicts no A1 mode at 1590 cm21 for metallic tubes
[22]. For the experimental position of the E2 modes,
controversy exists. Jorio et al. observed a symmetric
splitting of the E2 modes by 29 cm21 with respect to the
central G mode of graphite, whereas experiments using
parallel, crossed, and circular polarized light find the E2
modes overlapping in frequency with the A1 modes [24].
Our calculations seem to favor the first conjecture, but the
separation between the E2 and other modes is so small at
large radii, that the definite answer is still open.

The most relevant outcome of the calculation is the
significant drop of the frequency of the A1�L� mode in
metallic tubes compared to insulating ones (asterisks at
low frequencies in Fig. 1). The corresponding displace-
ment patterns of the A1 modes in zigzag and armchair tubes
are indicated in Figs. 2a and 2b. The frequency shift is
certainly not a simple result of curvature, since it occurs
abruptly for the transition from insulating to metallic tubes.
Although it is roughly the same for zigzag and armchair
tubes with similar radii, the A1�L� mode is Raman active
only in tubes with a chirality close to zigzag tubes, since
it has A1g symmetry in zigzag and A1u symmetry in arm-
chair tubes [25]. Compared to graphite, the frequency shift
is roughly proportional to a�d with a � 600 cm21 Å,
where d is the diameter of the tube. This is in reason-
able agreement with the experimental value of 440 cm21 Å
[13]. But contrary to Refs. [13,22], we assign the softened
mode to A1�L� instead of A1�T� symmetry.

The reason for the large down-shift is revealed by further
density functional calculations. If a displacement com-
mensurate to the A1�L� modes is superimposed on the
NT’s, a band gap opens independently of the sign of the
displacement, as indicated in Fig. 3. The gap size increases
linearly with the amplitude of the displacement dd and is
roughly equal to 26 eV�Å 3 jddj. It is generally accepted
235506-2
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FIG. 2. Displacement patterns of the longitudinal (transverse)
A1 mode in (a) zigzag (armchair) and (b) armchair (zigzag)
tubes. (c) Conventions used in the tight binding Hamiltonian

that the formation of such a band gap lowers the band struc-
ture energy of the system, since filled states are moved to
lower energies. At intermediate (electronic) temperatures,
the energy gain is roughly proportional to the square of the
gap [8,12]. In addition, the conventional restoring forces,
stemming from the other parts of the electronic spectrum
and from the direct interaction between the ionic cores,
are operative. These contributions are similar for insulat-
ing and metallic tubes. The formation of the band gap
therefore reduces the energy required to distort metallic
NT. Since the density of states around eF is additionally
inverse proportional to the radius of the tube, the A1�L�
mode is softer for smaller tubes with a larger density of
states at eF [13].

To corroborate this model, calculations on a metallic
�12, 0� tube were performed at a very high electronic tem-
perature, which was simulated by a large smearing parame-
ter s � 0.8 eV. It is expected that such a large electronic
temperature suppresses contributions from the electronic
states at the Fermi level. Indeed, the vibrational frequen-
cies of this artificially electronically heated metallic NT
are found to be similar to that of an insulating tube with
similar radius, in particular, the A1�L� mode is raised to
1580 cm21. Further details are revealed by the energy ver-
sus displacement curve calculated for the small and large
smearing parameters for the A1�L� mode in the �12, 0� NT
(Fig. 3d). The energy difference between these two cal-
culations (dotted curve) is proportional to the lowering of
the total energy by the gap formation. One important point
is that zigzag tubes have a small curvature induced band
gap at their equilibrium position (Fig. 3a), which we find
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FIG. 3. Band structure obtained by ab initio calculations in
the vicinity of kF for the �12, 0� zigzag nanotube in (a) the
equilibrium positions, (b) for a distortion compatible with the
A1�T� mode, and (c) for a distortion compatible with an A1�L�
mode �dd � 0.02 Å�. (d) Total energy (eV) versus distortion
(Å) diagram for a small (solid line) and large (dashed line)
electronic temperature, and the difference between both (dotted
curve).
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to close for a displacement ddgap�0 commensurate with
the A1�L� mode. The maximum of the dotted curve is
also moved towards this point. The frequency reduction
is, however, proportional to the second derivative of the
dotted curve and not related to the exact position of its
maximum.

To rationalize the band gap opening, we turn to the elec-
tronic band structure of graphite. It is well established that
the bands around the Fermi level of graphite are dominated
by p-type orbitals aligned normal to the tubule surface (p
bonding). Their behavior can be modeled by a tight bind-
ing Hamiltonian with zero on-site energy [8], in which the
eigenstates and eigenenergies are obtained by the diago-
nalization of a 2 3 2 matrix:√

0
V0 1 V1ei2pk1 1 V2ei2pk2

complex conjugate
0

!
,

(1)

where V0, V1, and V2 are the tight binding hopping ele-
ments between nearest neighbors (compare Fig. 2c), and
k1 and k2 are parametrizing the �k point ( �k � k1

�b1 2

k2
�b2, �bi being the reciprocal lattice vectors of the graphite

plane). This Hamiltonian describes two bands that inter-
sect at one particular point in the Brillouin zone. Addi-
tionally, for half filled p bands, as in the case of undoped
graphite, the Fermi level is located exactly at the position
where the two bands intersect. One can determine this
point by the requirement that the off-diagonal elements of
the matrix should become zero:

jV0 1 V1ei2pk1 1 V2ei2pk2j � 0 .

Then the Hamiltonian has only one double degenerated
eigenvalue e � 0. For a perfect graphite layer (corre-
sponding to V0 � V1 � V2) this condition is satisfied for
k1 � 2k2 � 61�3, which corresponds to the K point in
graphite 61�3� �b1 1 �b2� [8,9]. It can be shown that the
crossing point moves to 6�1�3 2 d� � �b1 1 �b2� for the dis-
placement pattern shown in Fig. 2a, and 6�1�3 1 d��b1 6

�1�3 2 d��b2 for the pattern shown in Fig. 2b [18].
The shift of the band crossing point has important con-

sequences for the band structure of NT’s. To show this,
we first turn to a three-dimensional representation of the
band structure of graphite in the vicinity of K indicated
in Fig. 4a. The two intersecting bands e�k� are forming
two cones around K, with one negative branch at ener-
gies lower than eF (filled states) and one positive branch
at higher energies (empty states). The resulting modifi-
cations for the displacements discussed above are indi-
cated in Figs. 4b and 4c. The electronic band structure of
NT’s is obtained by simple zone-folding arguments, i.e.,
by the intersection of the two-dimensional band structure
of graphene (cones) with those planes that are allowed by
the conditions imposed by the wrapping procedure [26].
For armchair tubes, the resulting band structure at about
235506-3
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FIG. 4. (a) Electronic band-structure of graphene in the vicin-
ity of the K point. Panel (b) and (c) indicate the changes in
the band-structure for two phonon modes. For the A1�T � mode
in armchair tubes [and A1�L� mode in zigzag tubes], the cross-
ing point shifts away from K towards G. For the A1�L� mode
in armchair tubes [and A1�T� mode in zigzag tubes], the cross-
ing point moves perpendicular to the line GK . The thick lines
indicate the band structure of an armchair tube obtained by in-
tersecting the gray plane with the two cones.

eF is indicated in Fig. 4 by the thick lines. The longitudi-
nal mode opens a gap in the armchair tube, since the tip
of the cones has moved perpendicular to the allowed lines,
whereas the transverse mode leads only to a shift of kF to
a different k point (cf. Fig. 3). For the zigzag tubes, the
arguments are similar, but the allowed lines are perpendic-
ular to those for armchair tubes, and hence it is again the
longitudinal mode that opens the gap. In general, the dis-
placement pattern that moves the cone perpendicular to the
lines allowed by the periodicity imposed by the wrapping
procedure creates the largest gap. This is, irrespective of
chirality, the A1�L� mode. As a result of the induced band
gap the frequency of the A1�L� mode is lowered by an
amount that depends essentially only on the radius of the
tube.

In summary, we have discussed and rationalized the
grouping of the vibrational modes in the G band of nano-
tubes. The most relevant outcome of our study is a pe-
culiar electron-phonon coupling mechanism that opens a
band gap when NT’s swing back and forth in a manner
compatible to the totally symmetric longitudinal A1 mode.
The oscillating band gap lowers the frequency of this mode
compared to graphite and insulating tubes. The underlying
mechanism resembles that of a usual Peierls distortion, but
at ambient conditions a regime well above the critical tem-
perature Tc is explored. Three points should be highlighted
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here. First, armchair tubes possess a small nonvanishing
gap at zero temperature, because the A1�L� mode freezes
at T , Tc (compare also Ref. [10]). The estimated transi-
tion temperature Tc is, however, only a few degrees Kelvin
[18]. Second, the strong radial dependency of the A1�L�
mode makes it an ideal candidate for measuring the radius
of metallic tubes, supplementing the current methods that
rely on the radial breathing mode [27]. Third, it is still un-
clear how the discussed electron-phonon coupling affects
the conductivity at low temperature or the electronic be-
havior in general, offering a field for further studies.
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