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Mode Locking in Reversed-Field Pinch Experiments
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The MHD mode trajectory in the Madison Symmetric Torus reversed-field pinch has been found to
obey the sine-Gordon equation. Corresponding to experiment, a perturbation analysis predicts the loca-
tions of mode locking to be at the vacuum chamber poloidal and/or toroidal gaps. The mode’s energy
dissipates when it locks, as shown by a decaying spiral phase-plane trajectory. Unlocked modes travel
around the torus without an abrupt energy loss. By varying key machine parameters obtained by statis-
tical analysis, the probability of locking in accordance with the experimental results can be predicted.
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The purpose of this Letter is to introduce a model that
describes the motion of the localized MHD mode that has
been observed to travel between the magnetic surfaces just
inside the reversal layer in the reversed-field pinch experi-
ment at the University of Wisconsin–Madison, the Madi-
son Symmetric Torus (MST). The model is used to predict:
(i) the conditions for locking of the MHD mode based on
experimental results and (ii) the probability of a discharge
locking as a function of key variables.

The MST experiment is a large reversed-field pinch with
a minor radius of 0.52 m and a major radius of 1.5 m [1].
The aluminum toroidal vacuum chamber wall is 0.05 m
thick except for two insulating gaps: one that cuts the
vacuum chamber toroidally and one that cuts the cham-
ber poloidally. Voltages can be set and/or measured across
these gaps. The equation of motion for the MHD mode can
be obtained by summing torques [2–5] acting on the mode
around the magnetic axis. In particular, those torques that
are proportional to the confining magnetic fields vary sinu-
soidally [4] around the mode trajectory due to the toroidal
effect. Depending upon the values of various parameters,
the probability of locking (the mode becomes stationary
and causes the discharge to expel its energy) increases.

Because identical operating conditions did not always
show locking from shot to shot, and in order to determine
the significance of the discharge variables, a binary logis-
tical regression analysis [6] of 4492 MST discharges was
performed. The analysis indicated which of seven vari-
ables had the strongest effect on the probability of lock-
ing. The four statistically most significant variables were
found to be IP, the induced plasma current; VTG, the volt-
age across the toroidal gap; VPG, the voltage across the
poloidal gap; and Vloop, the loop voltage around the torus.
Table I shows the coefficients obtained from the logistical
regression analysis [6].

In Table I, the sign of the coefficients determines
whether the probability of locking increases or decreases
as the predictor variable increases. The p value determines
whether these variables are statistically significant. In this
0031-9007�02�88(23)�235003(4)$20.00
analysis, any p value of magnitude less than 0.05 is sta-
tistically significant. Thus, increasing IP , VPG, and VTG
increases the probability of locking while increasing Vloop
decreases the probability of locking.

Experimentally, it was found that the mode locked at
or near the intersection of the poloidal and toroidal gaps.
The trajectory of the mode may not always pass over this
intersection during its motion around the torus, depend-
ing on the mode’s rotational transform at the minor radius
where the mode is located. Eventually, it does pass close
enough to the intersection of the gaps so that locking oc-
curs, provided that the mode-driving torque and the mode
dissipation are of the proper levels to permit locking.

Based on the observed properties of the MHD mode
along with an analysis of the torques around the magnetic
axis acting on the mode, we propose that it behaves as a
kink soliton, which is a solution of the sine-Gordon equa-
tion. Such kink solitons have been studied in the case of the
propagation of a fluxon along a Josephson-junction trans-
mission line (JTL) [7–10], and we shall follow a similar
analysis here.

In order to develop the sine-Gordon equation model, we
make the following assumptions about the nature of the
MHD mode. First, we assume that the mode is generated
by magnetic reconnection and is an isolated magnetic is-
land of finite length that wraps around the magnetic axis of
the torus as shown in Fig. 1. Just as is the case in the main
magnetic confinement surfaces, we assume that there is a
component of the current in the island that flows poloidally
around its magnetic surfaces producing magnetic moments

TABLE I. Statistical coefficients obtained by logistical regres-
sion analysis.

Predictor Coefficient p Value

IP 0.058245 ,0.001
Vloop 20.05649 ,0.001
VPG 0.03482 ,0.001
VTG 0.08045 ,0.001
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FIG. 1. A conceptual drawing of the MHD kink mode in the
MST torus. The mode threads its way along the torus passing
both the poloidal and toroidal vacuum chamber gaps.

along the length of the island. We further assume that the
dominant magnetic fields at the location of the island vary
toroidally as shown in Eq. (1):
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where r is the minor radius to the island, R is the major
radius of the torus, and f is the poloidal angle that can be
used to locate the island at each position along its length. A
force in the f direction results from the mDB force acting
on the magnetic moments of the island with a resulting
torque around the magnetic axis of

torque � 2mB0�r�R� sinf . (2)

Since the island is long enough so that the circulating cur-
rent around the island magnetic surfaces may be consid-
ered to be a solenoid, then each incremental section of the
island can be considered as a circular loop around which
the current flows. The magnetic forces on each loop act so
as to align the loops. Thus, any twisting of the loops will
result in a springlike restoring torque to realign them.

Accordingly, we sum torques around the magnetic axis
to produce the sine-Gordon equation

M
≠2f

≠t2
� K

≠2f

≠x2
2 T sinf , (3)

where M is the mass per unit length of the MHD mode,
K is the spring restoring torque constant for the individual
loops, T is the torque constant due to the external magnetic
field from Eq. (2), and x is the helical distance along the
MHD mode trajectory. We now must include the effects
of viscous damping and the drive term that make the MHD
mode move around the torus as well as the presence of the
vacuum chamber gaps. We include these effects after nor-
malizing Eq. (3) by adding a perturbation term as follows:

≠2c

≠t2 �
≠2c

≠x2 2 sinc 1 ´f , (4)
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where c is the normalized angle that describes the posi-
tion and velocity of the MHD mode, and the perturbation
term is

´f � 2a
≠c
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2 k
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In Eq. (5), the first term on the right, with coefficient a,
is due to viscous damping which is produced by resistive
MHD effects. The second term, g, is the driving term
which we assume is proportional to Vloop. Recall that
the logistical regression analysis of the experimental data
shows that Vloop is inversely correlated with locking, which
is exactly what the calculations will show. The delta func-
tion terms on the right-hand side of Eq. (5) are potential
hills or potential wells which are used to represent the
toroidal and poloidal gaps which produce field errors along
the trajectory of the mode. If all of these effects balance on
the average, the mode travels at a constant average veloc-
ity. The summations are required to account for multiple
encounters of the poloidal and toroidal gaps as the mode
travels along its helical path. The magnitudes of the coef-
ficients m and k are proportional to the magnitudes of the
field errors across the respective gaps which are determined
by IP, VTG, and VPG. i and j are integers. The signs of m

and k determine whether the gap acts as a potential well or
a potential hill. We have chosen the rotation number and
starting point of the mode so that it does not initially pass
the point where both gaps intersect. A negative sign indi-
cates a potential well. Q is the angle the mode trajectory
makes with the midplane of the torus and r0 is the minor
radius of the vacuum chamber.

As the MHD mode moves toward a hill, it slows down
and can be reflected. As it passes toward a well, it
speeds up but can be trapped (locked) close to the bottom

FIG. 2. MHD mode trajectory showing locations of gaps and
potential wells.
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of the well, provided the dissipation term is sufficiently
large or the driving term is sufficiently small so that the
mode does not gain enough energy from the driver to leave
the well.

Figure 2 shows the “unwrapped” MST torus showing
a mode trajectory and the locations of the poloidal and
toroidal gaps. Whenever the mode trajectory passes a gap,
it encounters a potential well as shown below the mode
235003-3
trajectory. Since the MHD mode is a soliton, it has both
temporal and spatial extent and thus can overlap more than
one well at a given instant and is more likely to be trapped
at such locations. This is particularly important when the
mode passes close to the intersection of the poloidal and
toroidal gaps since the well separation may be less than
between other potential wells.

Following Ref. [11], we obtain the following equations
of motion for the perturbed sine-Gordon equation:
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y is the velocity of the centroid of the mode, and x is
the position of the centroid of the mode. a and b are
the poloidal and toroidal distances around the torus at the
location of the MHD mode.

Figure 3 shows the solution of Eqs. (6) and (7) for both
a potential hill and a potential well either of which are
always located at the point x � 0. The mode travels up-
ward in this representation. The dashed lines represent the
hill case and the solid lines represent the well case. For
the hill condition, the velocity of the mode decreases as it
approaches the hill and then increases, if it has enough en-
ergy to overcome the hill. If not, it is reflected. In the latter
case, in the presence of sufficient dissipation a, the mode
can be “pinned” [11] to a position below the hill where the
external driving force g balances the reflective force from

FIG. 3. Phase-plane plots of the MHD mode trajectories for
a single potential hill (dashed lines) and for a single potential
well (solid lines) at x � 0. a was 0.033 for all trajectories;
g was 0.0075 for the locking trajectories and 0.035 for the
nonlocking trajectories. m was 10.5 for the hill case and 20.5
for the well case.
the hill. In the trajectories for a well, it can be seen that the
velocity increases as the mode approaches the well. If the
initial velocity is small enough and/or the dissipative term
large enough, the dissipative term lowers the stored energy
sufficiently so that the mode cannot escape the well. The
mode traps itself close to the point x � 0 corresponding to
the degradation of the mode observed experimentally [12].
The actual trapping point is slightly greater than x � 0
since the reflection force from the wall of the potential
well must be large enough to balance the driver term. To
eliminate either pinning or trapping, Fig. 3 shows that it
is sufficient to increase the initial velocity of the mode.
It then exhibits only a decrease (increase) followed by an
increase (decrease) in velocity as it passes the hill (well).

FIG. 4. Phase-plane plots of the MHD mode trajectories along
the torus showing both locking and nonlocking trajectories. The
horizontal lines show the locations of the poloidal and toroidal
gaps.
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FIG. 5. Experimental detection of MHD mode locking in the
MST device. The mode disappears just slightly past the poloidal
gap located at a toroidal angle of zero degrees (halfway between
the top and bottom of the figure). The horizontal axis is in msec.

We thus conclude that the gaps act as potential wells whose
depths are proportional to the field errors at the gaps. The
field errors are strongly influenced by the plasma current,
IP, which in turn is also influenced by the gap voltages
VTG and VPG.

Figure 4 shows two computed trajectories of the MHD
mode for both locking and nonlocking conditions. The val-
ues of m, k, a, and g were adjusted to produce locking.
By slightly increasing the value of g, decreasing the value
of a, and/or decreasing the values of m and k, the trajec-
tory around the torus can be made nonlocking, as shown
in Fig. 4. Conversely, increasing m and k produce lock-
ing. This is what is observed experimentally since lower
gap voltages (field errors) decrease the probability of lock-
ing. The nonlocking trajectory has been shifted to the right
for clarity. The horizontal lines show the locations of the
toroidal (dotted lines) and poloidal (solid lines) gaps that
the mode encounters during its trajectory. There is a much
larger change in velocity when the MHD mode passes

FIG. 6. (a) A summary of locking and nonlocking conditions
compared with experimental data. The experimental points are
x’s. (b) A distance versus velocity phase-plane plot for the same
conditions as in (a). For clarity, the nonlocking trajectories are
shifted upwards in (a) and to the right in (b).
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near the intersection of both the toroidal and poloidal gaps
since, because of the finite extent of the mode, both gaps
can operate simultaneously on the mode.

Figure 5 shows the experimental results in MST [12]
when the mode locks. The signals were detected with 32
pickup coils arranged uniformly toroidally around the ex-
periment at a fixed poloidal angle. To compare this with the
theory, the average time for the MHD mode to pass each
of the pickup coils was obtained and plotted as toroidal
angle versus time in Fig. 6a with the solid curves being the
theory. It can be straightforwardly fit to the data because,
in the experiment, locking occurs at the first toroidal gap
just past the poloidal gap although the mode overlaps both
the poloidal and toroidal gaps. For comparison, the driv-
ing term g was increased slightly to produce no locking
as shown by the dashed curve in Fig. 6a. A phase-plane
plot of toroidal angle versus velocity is shown in Fig. 6b
for the same set of conditions.

We conclude that the MHD mode in MST obeys the
sine-Gordon equation. A perturbation analysis predicts
locations of mode locking to be at the poloidal and/or to-
roidal gaps in the vacuum chamber, corresponding to ex-
perimental results. Also, mode energy is dissipated when it
is locked, as shown by the decaying spiral phase-plane tra-
jectory (Fig. 6b). Finally, locking probability depends on
key variables found to be statistically significant using lo-
gistical regression. Thus, by varying the key parameters,
one can predict the mode locking probability in accord with
experiments.
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