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Influence of Stagnant Zones on Transient and Asymptotic Dispersion
in Macroscopically Homogeneous Porous Media
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The role of stagnant zones in hydrodynamic dispersion is studied for creeping flow through a fixed
bed of spherical permeable particles, covering several orders of characteristic time and length scales
associated with fluid transport. Numerical simulations employ a hierarchical model to cope with the dif-
ferent temporal and spatial scales, showing good agreement with our experimental results on diffusion-
limited mass transfer, transient, and asymptotic longitudinal dispersion. These data demonstrate that
intraparticle liquid holdup in macroscopically homogeneous porous media clearly dominates over con-
tributions caused by the intrinsic flow field heterogeneity and boundary-layer mass transfer.
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A detailed understanding of transport in porous media
over the intrinsic temporal and spatial scales is important
in many technological and environmental processes [1].
For example, natural and industrial materials such as soil,
rock, filter cakes, or catalyst pellets often contain low-
permeability zones with respect to hydraulic flow of liquid
through the medium or even stagnant regions which then
remain purely diffusive. The relevance of stagnant zones
stems from their influence on dispersion: Fluid molecules
entrained in the deep diffusive pools cause a substantial
holdup contribution and thereby affect the time scale of
transient dispersion, as well as the value of the asymptotic
dispersion coefficient (if the asymptotic long-time limit
can be reached at all) [2–4]. Consequently, the associated
kinetics of mass transfer between fluid percolating through
the medium and stagnant fluid becomes rate limiting in
a number of dynamic processes, including the separation
and reaction efficiency of chromatographic columns and
reactors, or economic oil recovery from a reservoir.

In this respect, transport phenomena observed in model
systems such as random packings of spheres may help to
characterize materials with a higher disorder [5–7]. For
random packings of nonporous (impermeable) particles,
for example, the long-time longitudinal dispersion coef-
ficient is dominated by the boundary-layer contribution
(due to the no-slip condition at the solid-liquid interface)
or by medium and large-scale velocity fluctuations in the
flow field depending on the actual disorder of the medium
and the Peclet number, Pe �

uay dp

Dm
(with uay , the aver-

age velocity; dp , particle diameter; and Dm, the molecular
diffusivity) [6,8]. This behavior contrasts with random
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packings of porous (permeable) particles. In that case,
liquid holdup associated with stagnant zones inside the
particles may dominate dispersion when convective times
tc �

uayt
dp

significantly exceed the dimensionless time for

diffusion, td �
Dmt
d2

p
[9]. In many situations, however, both

a macroscopic flow heterogeneity and solute trapping in
stagnant zones contribute to transient and asymptotic dis-
persion [3,7,9].

Despite numerous theoretical, experimental, and nu-
merical studies (e.g., [1,7,8,10–12]), the transient and
asymptotic behavior of dispersion in porous media is not
completely understood [13]. In particular, the influence of
stagnant zones with respect to the actual mesoscopic and
macroscopic flow field heterogeneity of the medium has
found little attention in theory and experiment, and fur-
thermore, the additional length and time scale associated
with transport in stagnant regions complicates numerical
simulations. Therefore it leaves the controversy about the
dominating contribution to dispersion and the origin of
long-time tails in residence-time distributions unresolved
[3,7,14], let alone the question whether hydrodynamic
dispersion coefficients exist at all [13]. In this Letter,
we are able to resolve this issue experimentally and
numerically for a macroscopically homogeneous medium
by considering transient and asymptotic dispersion in a
random packing of porous spheres, i.e., in a medium with
bimodal porosity and associated length scales that differ
by orders of magnitude. The results are contrasted to the
behavior observed in packed beds of nonporous spheres.

In the experiments we used pulsed field gradient nuclear
magnetic resonance (PFG-NMR) [15] to measure over
© 2002 The American Physical Society 234501-1
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discrete temporal and spatial domain longitudinal nuclear
spin (hence, molecular) displacement probability distribu-
tions of the fluid molecules in single-phase incompressible
flow through beds of porous particles with average diame-
ter (dp) of 50 and 34 mm packed into a 4.6 mm internal
diameter (dc) cylindrical column. Pores inside the par-
ticles have a mean diameter (dpore) of only 12 nm. In this
hierarchical pore network the size of interparticle voids is
about 25% 40% of the particle size and exceeds the intra-
particle pore size by a factor of more than 103. One of the
consequences is that transport of solutes also occurs on
separate scales and is governed by different mechanisms
[7,9], i.e., while the forced convection dominates transport
between particles, diffusion is the only effective mecha-
nism—based on pore space permeability [1]— that oper-
ates inside the particles.

Mainly due to this large variety of spatial and tempo-
ral domains we did not attempt a model which simultane-
ously resolves the fluid dynamics on column, particle, and
pore scale, but exploited a hierarchical approach in the nu-
merical simulations: A lattice-Boltzmann (LB) algorithm
[16,17] was implemented for computing the flow field in
computer-generated models of the interparticle pore space,
and a particle tracking method was then used to record
tracer dispersion in the total interconnected pore network
(between and inside particles) [12]. The influence of pore
space morphology in a single particle on the effective in-
traparticle diffusivity (Dintra) is not modeled explicitly, but
is lumped into the model by using Dintra obtained from the
PFG-NMR measurements. In dealing with the geometri-
cal restrictions for tracer flux through the spheres exter-
nal surface, we followed a probabilistic approach. Close
to this interface fluid transport is diffusive in the inner
(Dintra) and outer (Dinter � Dm) pore space. Correspond-
ing differences in diffusive displacements become apparent
in different probabilities for entering (pe) or leaving (pl)
particles and can be shown by using mass balance argu-
ments to follow the relation

pe

pl
�

Dintra 3 eintra

Dm
, (1)

with eintra the porosity of the intraparticle pore space. In
the final flow simulations a periodic packing with dimen-
sion 800 3 200 3 200 (with bead particles of diameter 20
lattice points) was used, and the particle tracking calcula-
tions were performed by using 500 000 particles and a time
step of 0.1h (with h the lattice spacing). A more detailed
description of the numerical methods and generated porous
media including finite-size effects can be found elsewhere
[18]. It should be noted that this numerical approach in-
volves only a single free parameter, Dintra.

Figure 1 compares simulated displacement probability
distributions (propagators) Pay�R,D� in random packings
of nonporous and porous spheres where R is the net
displacement of the tracer over time D. Characteristic
differences in propagator position and shape for the oth-
erwise identical sphere packings originate in the existence
of an intraparticle stagnant zone in the case of porous
particles. While the volumetric flow rate is identical
234501-2
FIG. 1. Simulated and measured displacement probability dis-
tributions for liquid flow through a fixed bed of spheres after
D � 25 ms (porosity of the inter- and intraparticle pore space,
einter � 0.37 and eintra � 0.45, Dintra � 7.3 3 1026 cm2 s21,
dp � 50 mm, Pe �

uay dp

Dm
� 274 and Re �

uaydp

n � 0.66 with
kinematic viscosity: n � 8.9 3 1023 cm2 s21). Liquid phase:
degassed water.

in both cases, it results in different averaged velocities
through the bed according to the total porosity of the
respective pore space. Consequently, at observation times

D ,
r2

p

2Dintra
(rp is the particle radius) we expect a stagnant,

i.e., diffusion-limited fluid fraction in Pay�R, D� very
close to zero net displacement containing molecules that
have remained inside the particles over time D (diffusive
ensemble). Fluid molecules leaving (or entering) the
sphere gain (have gained) a net displacement due to
interparticle convection. By contrast, Pay�R, D� for the
random packing of nonporous spheres does not reveal
diffusion-limited fluid molecules. Those which temporar-
ily experience the no-slip condition at the solid-liquid
interface exchange rapidly with downstream velocities
in channels of only a few micrometers in dimension.
As also seen in Fig. 1 the simulated bimodal propagator
distributions obtained for porous particles are in good
agreement with the results of PFG-NMR measurements.
By recording the amount of stagnant fluid molecules at
increasing D that remain unexchanged with interparticle
velocities, Aintra�D�, we can monitor a (fictitious) empty-
ing of the spherical particles characterized by the classical
mass transfer rate constant Bintra � p2 Dintra

r2
p

[19]

Aintra�D�
Aintra�0�

�
6

p2

infX
n�1

1
n2 exp�2n2BintraD� . (2)

Figure 2 demonstrates that the experimental and simulated
intraparticle mass transfer kinetics match satisfactorily
(within 3%) using Dintra � 7.3 3 1026 cm2 s21 and
rp � 2.5 3 1025 m in both cases. As mentioned, this
value for Dintra is obtained from the experimental data
(Bintra � 11.52 s21) [19] and then used in the simula-
tions to reconstruct diffusion-limited mass transfer. The
234501-2
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FIG. 2. Intraparticle stagnant mobile phase mass transfer ki-
netics (dp � 50 mm, Pe � 274).

results in Fig. 2 demonstrate that the semiempirical simu-
lation procedure followed in this Letter works well, as
does Eq. (2) in describing both data sets.

Thus, mass transfer in these spatially discrete stagnant
zones (uniform spheres) has been adequately accounted for
and allows us to focus now on its influence on longitudinal
dispersion which we analyze by [12]

DL�t� �
Z t

0
CL�t0� dt0 , (3)

where CL�t� �
PN

i�1�ui�t� 2 uay� �ui�0� 2 uay� is the
velocity autocovariance [N is the number of tracer
particles and ui�t� is the longitudinal velocity of particle
i at time t]. Figure 3 compares transient behavior at
constant Pe (dp � 34 mm, dc � 4.6 mm). In both ex-
periment and simulation DL�t� for the nonporous particles
reaches its asymptotic value (D�

L) in a much shorter time
(after approximately 50 ms) than with the porous particles
(ca. 160 ms). While we observe a good agreement
between simulation and experiment concerning this time
scale, D�

L itself is underestimated by the simulation in
either case (by up to 25%). This effect seems to be
systematic as it appears for packings of porous and non-
porous particles and is probably caused by inaccuracies
in the LB flow field (notice that the relative error in the
hydraulic permeability, a measure of the flow resistance
by the solid phase, is around 11%) [18]. Other possible
explanations are related to the influence of the column
wall confining the sphere packing [20], bead particles
not being perfectly monodisperse (as evident from Fig. 2,
cf. [19]), and the fact that the nonporous particles actually
have small (micro)pores at the surface which contribute to
a finite but small particle holdup. With the independently
measured Dintra and known rp , intraparticle diffusion can
be identified as the most persistent contribution to transient
dispersion in the random packing of porous spheres, i.e.,
the holdup dispersion mechanism reaches its long-time
234501-3
FIG. 3. Time-dependent longitudinal dispersion for flow
through random packings of porous and nonporous spheres. In
both cases dp � 34 mm, einter � 0.37, Pe � 54 and Re � 0.13.

behavior after th �
r2

p

2Dintra
[19]. For nonporous particles,

on the other hand, we find a qualitative agreement be-
tween the corresponding time scale (about 50 ms, Fig. 3)
and characteristic time for boundary-layer dispersion
(tb � 40 ms) based on the nonlocal dispersion theory of
Koch and Brady [2]. This transient behavior may be also
due to mechanical dispersion [12,18]. Further work is
needed to resolve these contributions in macroscopically
homogeneous beds of nonporous particles.

Figure 4 compares the velocity dependence of asymp-
totic dispersion coefficients for random packings of porous
and nonporous spheres in the range 0.1 , Pe , 100.
While the simulated data again underestimate experimen-
tal values of D�

L (cf. Fig. 3) the effect of intraparticle
liquid holdup on a significantly increased dispersion is
evident. Already Aris [21] showed that this contribution
scales with Pe2, a result that was rediscovered later by
Koch and Brady [8]. When analyzing the dependence of
D�

L on Pe we have to account for longitudinal diffusion,
mechanical dispersion (Qm), boundary layer mass transfer
(Qb) and, of course, the intraparticle holdup (Qh) [7,8]

D�
L

Dm
� t 1 QmPe 1 QbPe ln�Pe� 1 QhPe2 . (4)

For Pe ! 0 D�
L

Dm
approaches the packed beds tortuosity

factor (t) which represents the long-time diffusion coeffi-
cient in the interconnected pore space. This value has been
measured independently by PFG-NMR (without flow) and
is subsequently used in the analysis. We then fitted the
experimental data, D�

L vs Pe (Fig. 4), to Eq. (4) and the
values of the parameters �t, Qm, Qb, Qh� thus obtained
are �0.51, 0.153 6 9 3 1023, 0.080 6 5 3 1023, 1.65 3

1023 6 2 3 1024� and �0.74, 0.144 6 0.016, 0.101 6

0.011, 0.020 6 6 3 1024� for the packings of nonporous
and porous spheres, respectively. The most striking
feature of this analysis is the substantial difference in Qh

characterizing holdup dispersion. Further, mechanical
234501-3
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FIG. 4. Dependence of asymptotic longitudinal dispersion on
Peclet number in fixed beds of porous and nonporous particles
(dp � 34 mm, dc � 4.6 mm). Liquid phase: water. The ex-
perimental data in Figs. 3 and 4 were obtained with an accuracy
of better than 5%.

dispersion is very similar in both columns which were
packed and consolidated by the same procedure. Values
for Qm (0.153 and 0.144) are actually of the same
order as Qm � 0.25 reported by Maier et al. [12] for
their simulation of dispersion in random packings of
nonporous spheres, in the range 1 , Pe , 5000 and
with einter � 0.44. As has already been pointed out by
these authors, values for Qb found in our work (0.08 and
0.101), together with their own value (0.03) suggest that
boundary layer dispersion is much lower than predicted by
the theory of Koch and Brady [8]. A possible explanation
for this discrepancy may be found in the significantly
different porosities considered in that theory, on one hand,
and the simulations and experiment on the other. Even the
relatively small difference in particle volume fractions of
the systems used by Maier et al. [12] (einter � 0.44) and
in this work (einter � 0.37) may contribute significantly
to the observed differences in Qm and Qb.

To conclude, the present work combines experimental
and numerical elements to differentiate between dispersion
mechanisms that originate in stagnant and flowing regions
of a macroscopically homogeneous porous medium. The
numerical simulations employ a semiempirical hierarchi-
cal model with a single free parameter to cope with the
large variety of temporal and spatial scales. The results are
in good agreement with our experimental data and clearly
demonstrate the dominating contribution of liquid holdup
to transient (Fig. 3) and asymptotic (Fig. 4) longitudinal
dispersion in a random packing of porous spheres with
column-to-particle diameter ratio above 100. Persistent
effects due to flow field nonuniformities were not identi-
fied which suggests that characteristic times for mechanical
dispersion are short compared to the diffusive time of this
234501-4
nonmechanical contribution. These findings suggest that
holdup dispersion in porous media may be more important
than assumed in many cases [3,7,14]. One of the remain-
ing challenges is to characterize the relative importance
of mechanical and nonmechanical dispersion mechanisms
when the heterogeneity length scale is increased, e.g., in a
confined random sphere packing with smaller column-to-
particle diameter ratio. Then, the macroscopic flow profile
may start to dominate dispersion and prevent an observa-
tion of Gaussian residence-time distributions [20,22].
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