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We investigate the gauge boson propagator in the three dimensional compact Abelian gauge model in
the Landau gauge at finite temperature. The presence of the monopole plasma in the confinement phase
leads to the appearance of an anomalous dimension in the momentum dependence of the propagator. The
anomalous dimension as well as an appropriate ratio of photon wave function renormalization constants
with and without monopoles is observed to be an order parameter for the deconfinement phase transition.
We discuss the relation between our results and the confining properties of the gluon propagator in
non-Abelian gauge theories.
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Three dimensional compact electrodynamics �cQED3�
shares two outstanding features of QCD, confinement [1]
and chiral symmetry breaking [2]. With some care, it
might be helpful for the understanding of certain nonper-
turbative aspects of QCD to study them within cQED3.
The nonperturbative properties of cQED3 deserve interest
by themselves because this model was shown to describe
some features of Josephson junctions [3] and high-Tc su-
perconductors [4].

Here, we want to elaborate on cQED3 as a toy model
of confinement. Indeed, this has been the first nontrivial
case in which confinement of electrically charged particles
was understood analytically [1]. Confinement is caused
here by a plasma of monopoles which emerge due to the
compactness of the gauge field. Other common features
of the two theories are the existence of a mass gap and
of a confinement-deconfinement phase transition at some
nonzero temperature. According to universality arguments
[5] the phase transition of cQED3 is expected to be of the
Kosterlitz-Thouless type [6].

In QCD4, the deconfinement phase transition is widely
believed to be caused by loss of monopole condensation
(for a review, see Ref. [7]) within the effective dual su-
perconductor approach [8]. Studying the dynamics of the
monopole current inside gluodynamics, monopole decon-
densation at the critical temperature is appearing as de-
percolation, i.e., the decay of the infrared, percolating
monopole cluster into short monopole loops [9]. This
change of vacuum structure has a dimensionally reduced
analog in the 3D monopole-antimonopole pair binding
which has been observed in cQED3 [10,11].

At present, the gluon propagator in QCD4 is under in-
tensive study. The analogies mentioned before encouraged
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us to study the similarities between the gauge boson propa-
gators in both theories. In order to fix the role of the
monopole plasma in cQED3, not just for confinement of
external charges but also for the nonperturbative modifi-
cation of the gauge boson propagator, we consider it in
the confinement and the deconfined phases. On the other
hand, on the lattice at any temperature we are able to sepa-
rate the monopole contribution to the propagator by means
of Eq. (2) below.

We have chosen the Landau gauge since it has been
adopted in most of the investigations of the gauge boson
propagators in QCD [12,13] and QED [14,15]. In order
to avoid the problem of Gribov copies [16], the alterna-
tive Laplacian gauge has been used recently [17]. The
Coulomb gauge, augmented by a suitable global gauge in
each time slice (minimal Coulomb gauge) has been advo-
cated both analytically [18] and numerically [19].

The numerical lattice results for gluodynamics show that
the propagator for all these gauges in momentum space is
less singular than p22 in the immediate vicinity of p2 � 0.
Moreover, the results for the propagator at zero momen-
tum are ranging from a finite [17] (Laplacian gauge) to a
strictly vanishing [16,18,19] (Coulomb gauge) value. Re-
cent investigations in the Landau gauge show that, besides
the suppression at p ! 0, the propagator is enhanced at
intermediate momenta which can be characterized by an
anomalous dimension [12] (see the last reference in [12]
for a comparison of different model functions).

In the present Letter we demonstrate that the momen-
tum behavior of the photon propagator in QED3 is also
described by a Debye mass and by an anomalous di-
mension which both vanish at the deconfinement transi-
tion. This mechanism can be clearly attributed to magnetic
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monopoles. The plasma contribution is relatively easy to
exhibit by explicit calculation and can be eliminated by
monopole subtraction on the level of the gauge fields. The
results of a study of the propagator in SU(2) gluodynamics
have been interpreted [13] in a similar spirit, where P vor-
tices appearing in the maximal center gauge were shown
to be essential for the enhancement of the Landau gauge
propagator at intermediate momenta.

For our lattice study we have adopted the Wilson ac-
tion, S�u� � b

P
p�1 2 cosup�, where up is the U(1) field

strength tensor represented by the plaquette curl of the
compact link field ul, and b is the lattice coupling constant
related to the lattice spacing a and the continuum coupling
constant g3 of the 3D theory, b � 1��ag2

3�. We focus here
on the difference between the confined and the deconfined
phase. All results presented have been obtained on lattices
of size 322 3 8. The finite temperature phase transition is
known to take place [11,20] at bc � 2.35.

The Landau gauge fixing is defined by maximizing the
functional

P
l cosuG

l over all gauge transformations G. For
details of the Monte Carlo algorithm, we refer to [11]. A
more complete presentation of our studies, including also a
thorough analysis of the propagator in the zero temperature
case, is in preparation [21]. Details on the implementation
of Landau gauge fixing, including the elimination of zero
momentum modes and the careful control of double Dirac
strings, can be found in Refs. [15,21].

We study the gauge boson propagator, �um�x�un �0��,
in the momentum space. The propagator is a function
of the lattice momentum, pm � 2 sin�pkm�Lm�, where
km � 0, . . . , Lm�2 is an integer. We discuss here the finite
temperature case and focus on the temporal component of
the propagator,

D33�p2, 0� �
1

LxLyLz
�u3�p, 0�u3�2p, 0�� , (1)

as a function of the spatial momentum, p2 �
P2

m�1 p2
m.

We recall that at finite temperature the confining properties
of static electrically charged particles are encoded in the
temporal component of the gauge boson field, u3.

In order to pin down the effect of monopoles we have di-
vided the gauge field ul into a regular (photon) and a singu-
lar (monopole) part which can be done following Ref. [22].
In the notation of lattice forms this is written

u � uphot 1 umon, umon � 2pD21dp�j� , (2)

where D21 is the inverse lattice Laplacian and the 0-form
�j [ ZZ is nonvanishing on the sites of the dual lattice oc-
cupied by the monopoles. The 1-form �p� j� corresponds
to the Dirac strings (living on the links of the dual lattice)
which connect monopoles with antimonopoles, d�p� j� �
�j. For a Monte Carlo configuration, we have fixed the
gauge, then located the Dirac strings, p� j� fi 0, and con-
structed the monopole part umon of the gauge field accord-
ing to the last equation in (2). The photon field is just
the complement to the monopole part according to the first
equation of (2).
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FIG. 1. Different contributions to the full D33 propagator (mul-
tiplied by p2) vs spatial lattice momentum squared and fits as
described in the text for b � 1.8 on a 322 3 8 lattice.

The photon and monopole parts of the gauge field con-
tribute to the propagator, D � Dphot 1 Dmon 1 Dmix,
where Dmix represents the mixed contribution from
regular and singular fields. We show the propagator
for p � �p, 0� together with the separate contributions,
multiplied by p2 and averaged over the same p2 values,
in Fig. 1 for coupling constant b � 1.8.

The regular part of the propagator has perfectly the free
field form

D
phot
33 �

1
b

Zphot

p2
, (3)

at all available b. The perturbative propagator defined
in terms of ul is obviously proportional to g2

3, which is
taken into account by the factor 1�b in Eq. (3). The fits of
the photon part of the propagator by the above expression
give the parameter Zphot as a function of lattice coupling
(dash-dotted line in Fig. 1 for b � 1.8).

The singular contribution to the gauge boson propagator
shows a maximum in p2Dmon

33 at some momentum (Fig. 1),
moving with increasing b nearer to jpja � 0. The mixed
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FIG. 2. Coefficients Z of fit (4) for full propagator and Zphot

for photon contribution (3) vs b.
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FIG. 3. Anomalous dimension a vs b and its best fit near bc
using function (6).

component gives a negative contribution to p2Dmix
33 , grow-

ing with decreasing momentum. The central point of our
Letter is that all these contributions together do not sum
up to a simple massive Yukawa propagator. To quantify
the difference between a Yukawa-type propagator and the
actual behavior we use the the following four-parameter
model function for D33�p2, 0�:

D33�p2, 0� �
Z

b

m2a

p2�11a� 1 m2�11a� 1 C , (4)

where Z, a, m, and C are the fitting parameters. This
model is similar to some of Refs. [12,23] where the propa-
gator in gluodynamics has been studied.

The first part of the function (4) implies that the pho-
ton acquires a Debye mass m (due to screening [1]) to-
gether with the anomalous dimension a. The (squared)
photon wave function renormalization constant Z describes
the renormalization of the photon wave function due to
quantum corrections. The second part of (4) represents a
d-function-like interaction in coordinate space.

Before fitting we average the propagator over all lattice
momenta at the same p2 to improve rotational invariance.
Thus the errors entering the fits include both the variance
among the averages for individual momenta and the in-
dividual errors. The fits were performed using standard
MATHEMATICA packages combined with a search for the
global minimum in x2�d.o.f. To check the stability of the
fits, we studied several possibilities of averaging and thin-
ning out the data sets, a procedure which will be discussed
elsewhere [21].

The model function (4) works perfectly for all p2 and
couplings b. For b $ 2.37 the best fit for mass parameter
m and anomalous dimension a are both consistent with
zero. Therefore we set m � 0 and a � 0 for these values
of b to improve the quality of the fit of Z and C.

It turns out that the inclusion of a constant term, C,
in the model function (4) is crucial for obtaining good
fits in the confinement phase, despite the fact that it is
very small [as a function of b the parameter C decreases
from C�1.0� � 0.18�4� to C�2.2� � 0.009�2�; it rapidly
vanishes in the deconfined phase]. Similarly to m and
231601-3
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FIG. 4. Same as in Fig. 3 for ratio RZ , Eq. (5).

a parameters we set C to zero for b $ 2.45, where C
becomes smaller than 1024.

An example of the best fit of the full propagator for
b � 1.8 is shown in Fig. 1 by the solid line [with C �
0.033�5�]. The parameter Z distinguishes clearly between
the two phases (Fig. 2). It coincides with the photon part
Zphot (defined without monopoles) in the deconfined phase
while it is much larger in the confined phase. This indicates
that the photon wave function gets strongly renormalized
by the monopole plasma. In contrast, the factor Zphot

smoothly changes crossing the deconfinement transition at
bc � 2.35.

The anomalous dimension a also distinguishes the two
phases (Fig. 3): it is equal to zero in the deconfinement
phase (perturbative behavior) while in the confinement
phase the monopole plasma causes the anomalous dimen-
sion growing to a � 0.25 0.3.

To characterize the properties of Z and a approaching
the phase transition we fit the excess of the ratio of Z’s
over unity,

RZ�b� �
Z�b�

Zphot�b�
2 1 , (5)

and the anomalous dimension a in the following form:
fi�b� � hi�b �i�

c 2 b�gi , b , b�i�
c , �i � a, Z� ,

(6)
where i � Z, a. The b

�a,Z�
c are the pseudocritical cou-

plings which might differ on finite lattices.
The best fits fa and fZ are shown in Figs. 3 and 4,

respectively. The solid lines in both plots extend over the
fitting region. The corresponding parameters are presented
in Table I. The pseudocritical couplings b

�a�
c and b

�Z�
c

are in agreement with previous numerical studies [11,20]
giving bc � 2.346�2�. Note that the critical exponents gi

are close to 1�2, both for the anomalous dimension a and
for RZ expressing the ratio of photon field renormalization
constants.

TABLE I. Best parameters for the fits (6).

i hi b�i�
c

gi

a 0.250(9) 2.363(3) 0.50(2)
Z 2.63(7) 2.368(5) 0.48(3)
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FIG. 5. The mass m vs b.

Finally, the b dependence of the mass parameter, m, is
presented in Fig. 5. As expected, the mass scale generated
is nonvanishing in the confinement phase due to the pres-
ence of the monopole plasma [1]. It vanishes at the decon-
finement transition point when the very dilute remaining
monopoles and antimonopoles form dipoles [11].

Summarizing, we have shown that the presence of the
monopole plasma leads to the appearance of a nonvanish-
ing anomalous dimension a . 0 in the boson propagator
of cQED3 in the confinement phase. We hope that our ob-
servation stimulates an analytical explanation.

At this stage of studying cQED3 as a model of confine-
ment we conjecture that in the case of QCD the Abelian
monopoles defined within the Abelian projection may be
responsible for the anomalous dimension of the gluon
propagator observed in Refs. [12,23]. If true, a monopole
subtraction procedure analogous to that employed here
would be able to demonstrate this. We found that the
anomalous dimension a and the ratio of the photon
wave function renormalization constants with and without
monopoles, RZ (5), represent alternative, also nonlocal
order parameters characterizing the confinement phase.
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