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This Letter presents quantum mechanical inequalities which distinguish, for systems of n spin- 1
2 par-

ticles (n . 2), between fully entangled states and states in which at most n 2 1 particles are entangled.
These inequalities are stronger than those obtained by Gisin and Bechmann-Pasquinucci [Phys. Lett. A
246, 1 (1998)] and by Seevinck and Svetlichny [quant-ph/0201046].
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The Bell inequality was originally designed to test the
predictions of quantum mechanics against those of a local
hidden-variables theory. However, this inequality also pro-
vides a test to distinguish entangled from nonentangled
quantum states. Indeed, it is well known that any non-
entangled two-particle state obeys the Bell inequalities and
that all pure entangled two-particle states violate them for
some choice of observables [1].

With the current experimental effort to produce en-
tangled states of three [2] and four [3] particles, it is natural
to pursue n-particle generalizations of the Bell inequality
that may likewise distinguish genuine multipartite entan-
glement from lesser entangled states. The goal of this pa-
per is to report such inequalities for spin- 1

2 particles which
are stronger than previous results [4–6].

The inequalities derived here are quadratic: they employ
squares of the expectation values of certain combinations
of operators. Curiously, they provide tests for entangle-
ment for systems of only three particles or more, and not
for n � 2. At the end of this Letter, a comment is made
on the reason why the present inequalities do not apply
to test so-called partially separable hidden-variables theo-
ries, as considered by Svetlichny [4] and Seevinck and
Svetlichny [6].

As a warming-up exercise, consider the familiar case of
two spin- 1

2 particles. Let A, A0 denote spin observables on
the first particle, and B, B0 on the second. We write AB,
etc., as shorthand for A ≠ B and �AB�r :� TrrA ≠ B;
�AB�c � �cjA ≠ Bjc� for the expectations of AB in the
mixed state r or pure state jc�.

The Bell inequality says that for nonentangled states,
i.e., for states of the form r � r1 ≠ r2, or mixtures of
such states,

j�AB 1 AB0 1 A0B 2 A0B0�r j # 2 . (1)

The maximal violation of (1) for entangled states follows
from an inequality of Cirel’son [7] (cf. Landau [8]):

j�AB 1 AB0 1 A0B 2 A0B0�r j # 2
p

2 . (2)

Equality in (2) can be attained by the singlet state.
The first result of this paper, and the stepping stone to

the multiparticle generalizations discussed below, is that
for all states r

�AB0 1 A0B�2
r 1 �AB 2 A0B0�2

r # 4 , (3)
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which strengthens the Cirel’son inequality (2). (A proof
is given in the appendix.) Note, however, that no smaller
bound on the left-hand side of (3) exists for nonentangled
states. (To verify this, take jc� � j""� and A � A0 � B �
B0 � sz .) Thus, the quadratic inequality (3) does not dis-
tinguish entangled and nonentangled states. But we shall
see below that this is different for multiparticle generaliza-
tions of (3).

Now, consider a system of three spin- 1
2 particles. In this

case, we wish to distinguish between, on the one hand,
states that are at most two-partite entangled, i.e., states of
the form r1 ≠ r23, r2 ≠ r13, and r12 ≠ r3, or mixtures
of these states, and, on the other hand, states which are not
of this form, and are called fully entangled. An example of
a fully entangled state is the so-called Greenberger-
Zeilinger-Horne (GHZ) state 1p

2
�j"""� 6 j###��. General-

izations of Bell inequalities for this purpose have been
presented by Svetlichny [4] and by Gisin and Bechmann-
Pasquinucci [5].

As before, let A, A0, B, B0, and C, C0 be spin observables
on each of the three particles, respectively. Denote the set
of all three-particle states as S3 and the subset of states
which are at most two-partite entangled as S 2

3 . Svetlichny
[4] obtained the following inequalities:

; r [ S 2
3 : j�S6

3 �r j # 4 , (4)

where

S2
3 :� ABC 1 ABC0 1 AB0C 1 A0BC 2 AB0C0

2 A0BC0 2 A0B0C 2 A0B0C0, (5)

S1
3 :� ABC 2 ABC0 2 AB0C 2 A0BC 2 AB0C0

2 A0BC0 2 A0B0C 1 A0B0C0. (6)

Reference [4] also showed that a pure state, unitarily
equivalent to the GHZ state, yields �S6

3 � � 4
p

2 for ap-
propriate choices of observables. More recently, Seevinck
and Svetlichny [6] show that this value is, in fact, the
maximum for all three-particle states, i.e.,

; r [ S3: j�S6
3 �rj # 4

p
2 . (7)

Gisin and Bechmann-Pasquinucci [5] obtained another
inequality by means of a recursive argument from the
so-called Bell-Klyshko inequality [9]. Specialized to the
© 2002 The American Physical Society 230406-1
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case of three particles, their results are

; r [ S 2
3 : j�F3�rj # 2

p
2 , (8)

where

F3 :� ABC0 1 AB0C 1 A0BC 2 A0B0C0, (9)

whereas

; r [ S3: j�F3�rj # 4 . (10)

Again, equality in (10) is attained for a GHZ state and
appropriate observables.

Thus, both (4) and (8) provide tests to distinguish two-
partite entangled states from fully entangled states in the
sense that a violation of either of these inequalities is a suf-
ficient condition for full entanglement. In order to compare
the strength of both inequalities, it is useful to note that

S6
3 � 7F3 2 F 0

3 , (11)

where F 0
3 denotes the same sum of operators as F3, but

with all primed and unprimed observables interchanged.
Hence, the inequalities (4) can be rewritten as

j�F3 6 F 0
3�r j # 4 . (12)

On the other hand, since (8) holds for all choices of the
observables, one can write this inequality equivalently as

maxj�F3�rj, j�F 0
3�rj # 2

p
2 . (13)

It is then clear (see Fig. 1) that the inequalities (12) and
(13) are independent. In particular, Eq. (13) allows the
(hypothetical) case �F3� � �F 0

3� � 2
p

2, which violates
(12), and similarly the (equally hypothetical) case �F3� �
4, �F 0

3� � 0 is allowed by (12), but forbidden by (13).
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FIG. 1. Comparing the regions in the ��F3�, �F0
3�� plane al-

lowed by the inequalities (13) (horizontal square), (12) (tilted
square), and (15) (circle with radius 2

p
2 ).

However, there exists a quadratic inequality that
strengthens both (12) and (13). In fact,

; r [ S 2
3 : �S1

3 �2
r 1 �S2

3 �2
r # 16 , (14)

or equivalently, in view of (11),

; r [ S 2
3 : �F3�2

r 1 �F0
3�2

r # 8 . (15)

Proof of (15).—Assume, for the moment, that the state
is of the form

r � r12 ≠ r3 . (16)

In that case, the expectations for particle 3 factorize from
those for the other particles, to yield
�F3�2 1 �F0
3�2 � ��X� �C� 1 �Y� �C0��2 1 ��X� �C0� 2 �Y� �C��2 � ��X�2 1 �Y�2� ��C�2 1 �C0�2� # 8 , (17)
where I have abbreviated

X :� AB0 1 A0B, Y :� AB 2 A0B0 (18)

and used �C�2 1 �C0�2 # 2, and inequality (3). The proof
is completed by noting that the left-hand side of (15) is
invariant under a permutation of the particle labels. There-
fore, once established for states of the special form (16),
relation (15) is also true for r2 ≠ r13 and for r1 ≠ r23.
Moreover, the left-hand side of (15) is a convex function of
r. Thus, Eq. (15) holds also for any mixture of the states
just mentioned, i.e., for all states in S

2
3 .

The quadratic inequality (15) is supplemented by a simi-
lar weaker bound for arbitrary states:

; r [ S3: �F3�2
r 1 �F 0

3�2
r # 16 . (19)

Proof of (19).—
sup��F3�2 1 �F 0
3�2� � sup��XC 1 YC0�2 1 �XC0 2 YC�2�

� sup��XC�2 1 �YC0�2 1 �XC0�2 1 �YC�2 1 2�XC� �YC0� 2 2�XC0� �YC��
# sup��XC�2 1 �YC0�2 1 �XC0�2 1 �YC�2� 1 2 sup��XC� �YC0� 2 �XC0� �YC��
# 2 sup��X�2 1 �Y�2� 1 4 supj�X� �Y�j # 4 sup��X�2 1 �Y�2� � 16 , (20)
where the supremum is over all r [ S3, and I have
used sup�XC� # supj�X�j supj�C�j � supj�X�j, etc., and
2j�X� �Y�j # �X�2 1 �Y�2.

Equality in (19) is again attained for a GHZ state. This
shows that (15), in contrast to its two-particle analogy (3),
does distinguish between fully entangled states and those
that are at most two-partite entangled.
Let us now consider the general case of n spin- 1
2 par-

ticles. Denote the spin observables on particle j, j �
1, . . . , n, as Aj, A0

j . Further, Sn stands for the set of all
n-particle states, and S n21

n for its subset of those states
which are at most n 2 1-partite entangled, defined simi-
larly as S

2
3 .
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The inequalities of Ref. [5] discussed above form part
of a recursive chain, constructed as follows:

Fn :� 1
2Fn21�An 1 A0

n� 1
1
2 F 0

n21�An 2 A0
n� , (21)

where F 0
n21 is the same expression as Fn21 but with all

Aj and A0
j interchanged. It is then shown that

; r [ S n21
n : j�Fn�rj # 2n�2, (22)

; r [ Sn: j�Fn��rj # 2�n11��2. (23)

Recently, Ref. [6] has provided a generalization of the
inequalities (4) and (7) to arbitrary n, namely,

; r [ S n21
n : �S6

n �r # 2n21, (24)

; r [ Sn: �S6
n �r # 2n21

p
2 , (25)

where

S6
n11 :� S6

n An11 7 S7
n A0

n11 . (26)

In order to compare these inequalities, note that the recur-
sive relations (21) and (26) imply the following relations
between the operators Fn and S6

n . When n is odd, and
putting n � 2k 1 1,

S6
n � 2k21��21�k�k61��2Fn 7 �21�k�k71��2F 0

n� . (27)

When n is even, writing n � 2k,

S6
n � 2k21�21�k�k61��2F�6�, (28)

where F�1� :� F and F�2� :� F 0.
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It appears from these relations that the inequalities (22)
and (24) are identical when n is even, and independent
when n is odd, as we have already seen in the special case
of n � 3. A similar remark holds for (23) and (25).

Also in the case of n particles, there are quadratic in-
equalities which strengthen and unify the results just men-
tioned. First, note that from (27) and (28) we obtain the
following identity:

�S1
n �2 1 �S2

n �2 � 2n22��Fn�2 1 �F 0
n�2� . (29)

Hence, quadratic inequalities may be expressed by either
pair of operators. In the present case, it is convenient to
work with the pair S6, since the recursive relation (26) is
somewhat simpler than (21).

A straightforward generalization of (20) yields

sup
r[Sn

�S1
n �2 1 �S2

n �2 � sup
r[Sn

�S1
n21An 2 S2

n21�A02
n

1 �S2
n21An 1 S1

n21A0
n�2,

# 4 sup
r[Sn21

�S1
n21�2 1 �S2

n21�2, (30)

which, by induction on (19), yields the following bound
for arbitrary quantum states:

; r [ Sn: �S1
n �2

r 1 �S2
n �2

r # 22n21. (31)

Next, consider an n-particle state of the form r �
r1,...,n21 ≠ rn. In analogy with (17), we find
�S1
n �2 1 �S2

n �2 � �S1
n21An 2 S2

n21A
0
n�2 1 �S2

n21An 1 S1
n21A0

n�2

� ��An� �S1
n21� 2 �A0

n� �S2
n21��2 1 ��An� �S2

n21� 1 ��A0
n� �S1

n21��2

� ��An�2 1 �A0
n�2� ��S1

n21�2 1 �S2
n21�2� # 2 sup

r[Sn21

�S1
n21�2 1 �S2

n21�2 # 22n22. (32)
As before, this result is extended to all (n 2 1)-partite en-
tangled states by considerations of particle label invariance
and convexity. Relation (32) is the n-particle generaliza-
tion of (14).

Concluding remarks.—The inequalities presented here
provide experimentally feasible means of testing whether
multiparticle states are fully entangled, in the sense that
violation of (32) is a sufficient condition for full entangle-
ment. These conditions may be useful, since, as shown
in Ref. [10], some recent experiments that claim to pro-
duce such entangled states did not exclude the possibility
of lesser entangled states. Note also that, for n even, the
test of the quadratic inequality (32) requires the same co-
incidence measurements for different spin settings as the
linear inequalities (22) and (24). Thus, the greater logical
strength of the former is not paid for by an increase in ex-
perimental difficulty.

Second, a curious aspect of the n-particle inequalities
presented here is that they are obtained from a basic
quadratic inequality (3) for n � 2, which itself, however,
does not distinguish between nonentangled and entangled
states.
A final remark concerns the relation between testing the
entanglement of quantum states and testing quantum me-
chanics against hidden variable (HV) theories. In analogy
to the local HV theories tested by the traditional Bell in-
equalities, Svetlichny [4] and Svetlichny and Seevinck [6]
consider HV theories of n particle systems with partial
separability. In such theories, not all particles are assumed
to behave locally (separably) with respect to all others, but
there is always some subset of particles that behave lo-
cally with respect to the particles in another subset (where
both subsets are nonempty, of course). These authors
show that the inequalities (12) and (24) also characterize
the predictions of all partially separable HV theories. By
contrast, the quadratic inequalities (15) and (32) reported
here do not hold for such theories. The reason for this
is that these inequalities rely on the validity of (3) for any
two-particle subsystem. However, in a nonlocal HV model
for two particles, the Cirel’son inequality, which follows
from (3), can be violated. Hence, the inequalities de-
rived here need not hold for such non-quantum-mechanical
theories.
230406-3



VOLUME 88, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 10 JUNE 2002
For example, it is easy to construct a partially separable
HV model for three particles: let the hidden variable
l have only two possible values, and let AB � AB0 �
A0B � C � 1, A0B0 � C0 � 21 for one value of l, and
AB � AB0 � A0B � C � 21, A0B0 � C0 � 1, for the
other. Then one has �S6�HV � 4, in accordance with (4),
but violating (15).

I thank George Svetlichny and Michiel Seevinck for
fruitful and stimulating discussions.

Appendix: Proof of inequality (3).—The expression
�X�2 1 �Y�2 � �AB0 1 A0B�2

r 1 �AB 2 A0B0�2
r is a con-

vex function of r, and so it will be sufficient to consider
pure states only. Let r � jc� �cj. By the Schmidt
biorthogonal decomposition theorem we can write

jc� � pjf1� jx2� 2 qjf2� jx2� , (33)

where p and q are two positive numbers satisfying p2 1

q2 � 1 and jfi� and jxj� form orthonormal bases in the
two-dimensional Hilbert spaces H1 and H2 of the two
particles, respectively.

Now choose a system of coordinates x1, y1, z1 for the
first particle such that jf1� � j"�1, jf2� � j#�1, in the z1
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direction, and a similar coordinate system x2, y2, z2 for
the other particle such that jx1� � j"�2, jx2� � j#�2, in the
z2 direction. Let further A � a ? s1, B � b ? s2, etc.,
where si denotes the Pauli spin vector in Hi.

In these coordinates, one may write

�AB�c � 2az1 bz2 2 2pq�ax1bx2 1 ay1by2 � , (34)

etc., and so, for given a, a0, b, b0, the expression �X�2 1

�Y�2 is a quadratic function of 2pq. Hence, it will attain its
maximum at one end of the range of 2pq, either 2pq � 0
or 2pq � 1. In the former case the state is factorizable
and the inequality is trivially satisfied. In the second case
we have

�X�2 1 �Y�2 � �a ? b0 1 a0 ? b�2 1 �a ? b 2 a0 ? b0�2.
(35)

Requiring this to be maximal with respect to variations in
a, subject to a ? a � 1, shows that a lies in the plane of
b and b0; similarly a0 lies in this plane.

Now let a, b, g, and d denote the angles from a to
b, from b to a0, from a0 to b0 and from b0 to a, respec-
tively. Then
�X�2 1 �Y�2 � �cosb 1 cosd�2 1 �cosa 2 cosg�2

� 4 cos2
µ

b 1 d

2

∂
cos2

µ
b 2 d

2

∂
1 4 sin2

µ
a 1 g

2

∂
sin2

µ
a 2 g

2

∂

# 4 cos2

µ
b 1 d

2

∂
1 4 sin2

µ
a 1 g

2

∂
� 4 , (36)
since a 1 b 1 g 1 d � 2p.
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