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We present a kinetic theory for a dilute noncondensed Bose gas of two-level atoms that predicts the
transient spin segregation observed in a recent experiment. The underlying mechanism driving spin
currents in the gas is due to a mean-field effect arising from the quantum interference between the direct
and exchange scattering of atoms in different spin states. We numerically solve the spin Boltzmann
equation, using a one-dimensional model, and find excellent agreement with experimental data.
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A recent experiment at JILA has displayed remarkable
effects of spin density fractionation in a trapped, ultra-
cold gas of Rb atoms with no Bose-Einstein condensate
present [1]. Under conditions which we summarize in
more detail below, sudden preparation of all atoms in a
coherent superposition of two spin states generates a spin
wave resulting in the observed spatial separation of the
two components. This occurs even though both the mean
field and differential Zeeman energy differences are al-
most a thousand times smaller than the thermal energy
kBT . In this Letter, we show that this astonishing depar-
ture from equilibrium results from quantum interference
between direct and exchange scattering of atoms in the two
spin states. A first-principles kinetic theory with no fitting
parameters gives excellent agreement with the experimen-
tal data and suggests possibilities for quantitative stud-
ies of quantum coherence in noncondensed Bose-Einstein
gases.

In the experiment of Lewandowski et al., a few million
atoms of 87Rb are confined in a magnetic cigar-shaped trap
(vz�2p � 7 Hz, vr�2p � 230 Hz). By applying mi-
crowave and radio-frequency radiation, all atoms in the gas
can be uniformly prepared in an arbitrary superposition of
the jF � 1,MF � 21� � j1� and j2, 1� � j2� hyperfine
states of the ground configuration. The frequency split-
ting, D � v1 2 v2, between the two states depends on
the position r of the atom in the trap: D�r� � DBR�r� 1
DMF�r� 2 vhf, where vhf is an overall uniform frequency
splitting �vhf�2p � 6.8 GHz�. The first term DBR�r� is
due to the differential Zeeman effect, predicted by the
Breit-Rabi formula, for atoms in a nonuniform magnetic
field. The second term is due to the mean-field frequency
shift proportional to the density of the gas, which has a
Gaussian profile in the harmonic trap. By applying two
p�2 pulses separated by a variable delay time, this local
frequency splitting is extracted from the Ramsey interfer-
ence fringes measured at different positions along the axial
direction of the trap.

Lewandowski et al. describe experiments in which the
second p�2 pulse is omitted and the time evolution of
the density of either state is observed after the initial p�2
1 0031-9007�02�88(23
pulse. The following spectacular behavior is observed: the
densities of the two states segregate along the axial direc-
tion of the trap and then relax to a completely overlapping
stationary state after approximately 200 ms. This fascinat-
ing behavior is found to depend crucially on two different
parameters: the density of the gas n and the nonuniformity
of the local frequency splitting D�r�. No segregation is ob-
served when the density is lowered below a critical value,
or D�r� is made approximately uniform by adjusting the
bias magnetic field. On the other hand, the segregation
effect becomes more dramatic as the density and the inho-
mogeneity of the splitting are increased.

In this Letter, we show that the transient spin segrega-
tion is actually an overdamped spin wave arising solely
from the mean field of the gas, even if the interaction is
spin independent. This effect is well known from earlier
work done on spin polarized hydrogen gases [2–5] and
is initiated by the spatially varying local frequency split-
ting D�r�. When D�r� is uniform, the spins of the atoms
throughout the gas precess in exactly the same fashion
so that every forward scattering event can be understood
in terms of two identical atoms colliding, giving rise to
the well-known factor of 2 from the direct and exchange
terms in the Hartree-Fock mean-field theory of a Bose gas.
However, when D�r� depends on position, two colliding
atoms will have acquired different spin states depending
on their history in the trap. In this case, when the direct
and exchange forward scattering events are added, an ad-
ditional mean-field term appears proportional to the local
spin �S�r, t� of the gas, which accounts for the construc-
tive and destructive interference between the two scatter-
ing paths. It is this term that gives rise to the spin wave.
This mean-field effect occurs when the transverse spin (the
internal coherence) is long-lived compared to thermal re-
laxation, emphasizing that the gas of two-level atoms in
the JILA experiment is quite different from an incoherent
binary mixture. A solution of the collisionless Boltzmann
equation for the spin is already sufficient to predict spin
waves. However, because the JILA experiment is in an in-
termediate regime approaching the hydrodynamic region,
the spin current is strongly damped due to collisions.
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The Hamiltonian describing a single, trapped, two-level
atom of mass m is

Ĥ �

∑
2

h̄2

2m
=2 1 Uext�r�

∏
1̂ 1

h̄
2

�V�r� ? �̂t . (1)

The first term in (1) is the center of mass Hamiltonian
containing the kinetic energy and the external parabolic
trap Uext�r� � mv2

z �a2�x2 1 y2� 1 z2��2, where a �
vr�vz . This part of the Hamiltonian is uncoupled from the
internal, pseudospin, degree of freedom, which is governed
by the second term: �V�r� ? �̂t � Vx�r�t̂x 1 Vy�r�t̂y 1

Vz�r�t̂z , where t̂i is a Pauli matrix. In the absence of
an external coupling field, Vz � DBR (we make the rotat-
ing wave approximation to eliminate the hyperfine split-
ting vhf). We model binary interactions between particles
by a delta pseudopotential describing elastic, spin pre-
serving collisions, the strength of which depends on the
hyperfine states Vij�r, r0� � gijd�r 2 r0�, where gij �
4p h̄2aij�m, with aij being the scattering length for colli-
sions between atoms of species i and j. For 87Rb, we take
a11 � 100.9a0, a12 � 98.2a0, and a22 � 95.6a0, where
a0 is the Bohr radius [1].

Several groups have previously worked out the funda-
mental kinetic theory of a noncondensed dilute Bose gas
with internal degrees of freedom, to describe spin waves
in spin-polarized atomic hydrogen [3,6–12]. Using a
semiclassical approximation to describe atomic motion in
terms of a phase-space distribution function, we obtain
coupled Boltzmann equations for the distribution functions
of atomic density, f�r,p, t�, and spin density, �s�r,p, t�:
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Ç
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≠ �s
≠t

1
p
m

? === �s 2 ===Un ? ===p �s 2

h̄
2

=== �Vn ? ===pf 2 �Vn 3 �s �
≠ �s
≠t

Ç
coll
. (3)

Equation (2) has an implicit sum over the repeated index
i � x, y, z. The total density and spin density are obtained
from the distribution functions as n�r, t� � n1�r, t� 1

n2�r, t� �
R

dp f�r,p, t���2p h̄�3 and �S�r, t� �
R

dp 3
�s�r,p, t���2p h̄�3, respectively. Here the longitudinal
component of the spin represents the relative density
Sz�r, t� � n1�r, t� 2 n2�r, t� of the two hyperfine states
and the transverse components Sx and Sy describe the
real and imaginary parts of the internal coherence. The
center of mass effective potential is Un�r, t� � Uext�r� 1

g11n1 1 g22n2 1 g12�n1 1 n2��2. The modified coupling
field including mean-field effects is

�Vn�r, t� � �V0
n�r, t� 1

g12
h̄

�S�r, t� , (4)

where �V0
n�r, t� � 	Vx�r�,Vy�r�,Vz�r� 1 DMF�r, t�
,

and

DMF�r, t� � 2�g11n1 1 g12n2 2 �g22n2 1 g12n1���h̄ .
(5)

The collision integral in Eq. (3) is given by [3,9]

≠ �s
≠t

Ç
coll

�
pg212

h̄

Z dp2
�2p h̄�3

Z dp3
�2p h̄�3

Z
dp4 d�ep 1 ep2 2 ep3 2 ep4�d�p 1 p2 2 p3 2 p4�

3 	3f�p3� �s�p4� 1 �s�p3�f�p4� 2 f�p� �s�p2� 2 3 �s�p�f�p2�
 , (6)
where ep � p2�2m. Here we neglect a principal value
contribution, which gives a second-order correction to the
free streaming evolution, and we take all scattering lengths
aij to be equal — a reasonable approximation for 87Rb.
This approximation results in the conservation of spin den-
sity during collisions, i.e.,

R
dp ≠ �s�≠tjcoll � 0. When the

small differences in scattering lengths are accounted for,
the transverse spin decays slowly. For 87Rb, this contribu-
tion to the “T2” lifetime is of the order of 10 s [12].

Immediate insight can be gained if we solve for the
time evolution of the spin density by integrating (3) over
momentum

≠ �S

≠t
1
1
m

=== ? �J � �V0
n 3 �S , (7)

where �J �
R

dp p �s��2p h̄�3 is the spin current [13].
Since �S 3 �S � 0, the second term g12 �S�h̄ in (4) has no
direct affect on the spin density. We show below that this
term instead sets up a spin current �J in the gas that strongly
affects �S. Also, an interesting paradox has emerged con-
cerning the factor of 2 in the mean-field frequency shift.
For an incoherent binary mixture of atoms in either of the
states j1� or j2� (i.e., sx � sy � 0), it is straightforward
to show from (4) and (5) that the difference in chemical
potentials due to interactions is m1 2 m2 � �2�g11n1 2

g22n2� 1 g12�n2 2 n1��. There is a factor of 1 instead of
2 in front of g12 since the two atoms are distinguishable.
However, when the atoms are manipulated in a coherent
fashion, from (7) we see that the precession of the
transverse spin is given by DMF, which is the mean-field
frequency shift measured by the Ramsey technique.

The hydrodynamic equation for the spin current �J is
obtained by assuming the following simple form for the
spin distribution function �s�r,p, t� � f0�r,p� � �M�r, t� 1

p ? �v�r, t��kBT�, where �M�r, t� � �S�r, t��n0�r� is the re-
normalized spin density. Here, and in the rest of this Letter,
we assume that the total phase-space density is station-
ary f0�r,p� � h0 exp	2�p2�2m 1 Uext�r���kBT 
. The
constant h0 � a2N�h̄vz�kBT �3 is determined by the re-
quirement

R
dp

R
dr f0��2p h̄�3 � N , where N is the total

number of atoms. The equilibrium total density is n0�r� �R
dp f0�r,p���2p h̄�3. Using this ansatz, the equation of

motion for the spin current �J is
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≠�J
≠t

� �F 1 �Vn 3 �J 2
�J

tD
, (8)

where �F � 2kBT=== �S 2 �S===Un 2 h̄n0=== �Vn�2. Here,
the diffusion relaxation time is [11,12] tD�r� �
	�32a212n0�r��3�

p
pkBT�m 
21.

The spin segregation dynamics is described by the lon-
gitudinal spin component Sz. In the absence of a coupling
field Vx � Vy � 0, the evolution of Sz is entirely due
to the spin current Jz and thus the total Sz is conserved
≠

≠t

R
dr Sz � 0. The current Jz is driven by the first two

terms on the right-hand side of Eq. (8). The first term is
due to the mechanical force Fz arising from the spatial gra-
dient of the local energy splitting. The second term repre-
sents the spin current driven by the dynamics of the Sx and
Sy components through the term g12 �S�h̄. The third term
represents the diffusion transport process that gives rise to
the damping of the current. As already mentioned in this
Letter and also discussed in Ref. [1], the magnitude of the
mechanical force Fz is negligibly small for driving the spin
current Jz in the experimental situation. To highlight the
effect of the term g12 �S�h̄, we take the time derivative of
Eq. (8), work to first order in g12, and neglect Fz , the re-
laxation term, and terms of second order in �J. This gives

≠2Jz

≠t2
� 2

g12kBT

h̄
S2�===f , (9)

where S� and f are the amplitude and phase angle of
the transverse spin component Sx 1 iSy � S�eif . Equa-
tion (9) explicitly shows that the spatial gradient of
the phase angle induces the spin current Jz. In a short
period of time right after the p�2 pulse, it is reason-
able to assume that the transverse spin components are
undergoing rotation with the local Larmor frequency
f�r, t� � V0

nz�r�t. With this simple approximation, the
induced spin current for short times is given by Jz �
2g12kBTS2��r�===V0

nz�r�t3�6h̄. Taking V0
nz � DBR 1

DMF � 2mv
2
diffz2�2h̄ and the initial condition

S��r� � n0�0�e2Uext�kBT , we find that the initial evo-
lution of Sz after the p�2 pulse is given by

Sz�r, t� � 2
g12n

2
0�r�kBT

24h̄2
v2
diff

µ
1 2

2mv2
z

kBT
z2

∂
t4. (10)

Projecting out the populations n1 and n2 from Eq. (10),
we find that the spin states segregate. The above for-
mula predicts that Sz has nodes at z � 6

p
kBT�2mv2

z ,
which we have verified in the numerical calculation be-
low. Equation (10) identifies the characteristic time scale
tspin � �24h̄2�g12n0�0�kBTv

2
diff�1�4 needed for the sys-

tem to build up the Sz component. For the JILA parame-
ters, tspin � 30 ms, which is consistent with the delay time
seen in experiments before the segregation begins.

To complement our simplified analysis, we also nu-
merically solve the Boltzmann equation [Eq. (3)]. Mo-
tivated by the observation that spin segregation occurs
only along the axial direction [1], we construct a one-
dimensional (1D) model of the system by making the
230405-3
ansatz �s�r,p, t� � �s�z,p, t�h0�x, y,px ,py� and then av-
eraging over x and y. Here we take the static profile in
the radial direction to be h0 � exp	2��p2x 1 p2y ��2m 1

mv2
r �x2 1 y2��2��kBT
. We substitute this ansatz into (3)

and integrate over the radial phase-space variables, which
gives the following 1D model Boltzmann equation:

≠ �s
≠t

1
p
m

≠ �s
≠z

2
≠Uext

≠z
≠ �s
≠p

2 �Vn 3 �s �
≠ �s
≠t

Ç
1D
.

(11)

Here we have made the approximation Un � Uext and we
have dropped the fourth term in Eq. (3) coupling the center
of mass motion and spin dynamics. The collision integral
in one dimension involves a phase-space average in the ra-
dial direction ≠ �s�≠tj1D �

R
xy ≠ �s�≠tjcoll�

R
xy h0, where

we have introduced the notation
R

xy �
R

dx
R

dy
R

dpx 3R
dpy . The radial averaging introduces a scaling factor

in the mean-field terms, so that gij ! g0
ij � gij��2l2dB�,

where ldB � �2ph̄2�mkBT�1�2 is the thermal de Broglie
wavelength. g0

ij has the correct units of energy times dis-
tance required in our 1D model.

Although the direct numerical simulation using the full
expression for the one-dimensional collision integral de-
rived from Eq. (6) is technically feasible, we introduce a
simple model for the relaxation

≠ �s
≠t

Ç
1D

� 2
1

tcl�z�
� �s�z,p, t� 2 �M�z, t�f0�z,p�� , (12)

where tcl�z� � �16a212n0�z�
p

pkBT�m �21 is the radially
averaged mean collision time, f0�z,p� � f0�r,p��h0, and
�M�z, t� � �S�z, t��n0�z�. Equation (12) contains the es-

sential properties of collisions described by Eq. (6): (i) it
vanishes when the distribution function has the local equi-
librium form �s�r,p, t� ~ e2p2�2mkBT ; (ii) it conserves the
spin density. We note that the form (12) does not require
the knowledge of the equilibrium solution for �S�r, t�.

We solved the 1D spin kinetic equation (11) numerically
using a finite difference scheme. For the initial state of
the spin, we take sy�z,p, t � 0� � f0�z,p�,sx �z,p, t �
0� � sz�z,p, t � 0� � 0, corresponding to the state im-
mediately following the first p�2 pulse. Figure 1 shows
the time sequence of the density of the j1� state n1�z, t� �
�n0�z� 1 Sz �z, t���2, corresponding to Fig. 3(c) col-
umns (v)–(vii) of Ref. [1]. This shows that the spin seg-
regation vanishes when the peak density is lowered to n �
2 3 1012 cm23. The red curve is the raw JILA data and
the blue dashed line is the theory. We have also compared
our numerical results to Fig. 3(c) columns (i)–(iv) of
Ref. [1] and find very good agreement.

We finally investigate the effect that the spin wave and
relaxation have on the Ramsey fringes. Ramsey fringes can
be obtained from the results of our calculation by simply
rotating the Bloch vector �S�z, t� at each time by 90± about
the local oscillator vector �V � 	cos�dt�, sin�dt�, 0
, where
d is the detuning between coupling field and the hyperfine
splitting. In the top row of Fig. 2 we show the Ramsey
230405-3
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FIG. 1 (color). Time sequence of n1�z, t�. The red line is the
unsmoothed JILA data and the blue line is the numerical solution
to (11). We have taken a temperature of T � 850 nK [14],
and the peak total density n listed under each column is in
units of 1013 cm23. We approximate DBR � mv2

BRz2�2h̄, and
take vBR�vz � 0.09 for each column in our calculation. This
corresponds to a value vdiff�vz � 0.1 for the first column. The
axial position z is in the range 6600 mm.

fringes corresponding to the third column of Fig. 1, taken
at the center (left) and the edge (right) of the cloud. We
compare the Ramsey fringes with (red) and without (blue)
relaxation (i.e., ≠ �s�≠tj1D � 0). We find that the Ramsey
fringes taken at different positions across the cloud are
all modulated at the period of the spin wave and that the
fringe visibility decays when the effect of collisions is
included through ≠ �s�≠tj1D. At long times the system
relaxes to the state �S � 0; that is, the gas evolves to a
completely overlapping binary mixture, which is reflected
by the vanishing of the fringe visibility. In the bottom row,
the differential Zeeman splitting is set to zero DBR � 0,
which reduces the curvature of the local energy splitting.
In this case, the modulation frequency is lowered and the
fringes are visible for a much longer time. The trends
shown in Fig. 2 agree qualitatively with experiment [14].

In summary, we have presented a simplified model for
the spin density and current that predicts longitudinal spin
waves in the gas when the energy splitting between hyper-
fine states is nonuniform. We have also numerically solved
a one-dimensional model of the Boltzmann equation that
supports our simplified hydrodynamic model and gives ex-
cellent agreement with the JILA experiment [1].

We thank E. A. Cornell, H. J. Lewandowski, J. Roberts,
and S. Rolston for useful discussions. We also thank H. J.
Lewandowski for providing us the experimental data used
in Fig. 1. T. N. acknowledges support from JSPS.

Note added.—While this Letter was being written,
two independent articles discussing the JILA experiment
[15,16] appeared on the lanl.arXiv.org e-print archive.
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FIG. 2 (color). Modulation of Ramsey fringes. The top row
corresponds to the third column of Fig. 1, and in the bottom row
we have set DBR � 0 (which corresponds to sitting at the “magic
spot” bias field of 0.323 mT). The first column is taken at
z � 7 mm and the second column at z � 350 mm. The red and
blue lines compare the dynamics with and without collisional
relaxation, respectively. We have taken a detuning of d�vz � 5.

Their results, which use slightly different formulations in
detail, are essentially consistent with ours.
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