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Internal Waves and Synchronized Precession in a Cold Vapor
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Exchange in a Boltzmann gas of bosons with several internal states leads to collective transport of
internal polarization. The internal dynamics can be understood as Larmor precession in the presence
of a torque induced by atoms on each other via exchange coupling. A generalized Bloch equation
that includes interatomic exchange effects as well as orbital motion in the gas is derived and used to
interpret a recent experiment by Lewandowski et al. as an excitation of a collective wave of internal state
polarization. It is shown that exchange leads to formation of domains in which precession frequencies
are synchronized.
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Atomic gases in the cold collision regime character-
ized by de Broglie wavelength long compared to the range
of interparticle potential represent an interesting quantum
many-body system. Most surprisingly, spin waves in a
cold spin polarized gas are collective excitations. This phe-
nomenon was actively studied in the 1980s, first predicted
by Bashkin [1] and independently by Lhuillier and Laloë
[2] and confirmed by NMR experiments in spin polarized
H # by Johnson et al. [3], in 3He by Nacher et al. [4], and
in dilute 3He-4He mixtures by Gully and Mullin [5]. A
detailed quantitative theory of the observed NMR spectra
was given by Lévy and Ruckenstein [6]. Bigelow et al. [7]
demonstrated that collective spin waves are preserved even
in the Knudsen regime. The theory was further developed
by Miyake et al. [8] and reviewed in [9].

Exchange effects in gases are not limited to spin phe-
nomena, since any pair of internal states can play a role
similar to spin states in exchange collisions [10]. Apart
from new energy scales arising due to internal states spec-
trum, the main difference is in the anisotropic character
of exchange, since for generic internal states the Hamilto-
nian does not have spin-rotational symmetry. Verhaar et al.
[11] demonstrated that interatomic exchange leads to en-
hancement (by a factor of 2) of the density shift of Rabi
transition. Similar exchange enhancement occurs in the
optical spectrum density shift [12]. New aspects of cold
collision exchange arise in experiments on Bose-Einstein
condensation (BEC) in trapped gases. The exchange part
of the density shift is absent in BEC at T � 0 and is re-
duced at 0 , T , TBEC [12–14]. Interestingly, in this
case all modes involving coupling of internal states are split
into doublets [15].

In a recent experiment [16] Rabi transition was studied
in a cigar shaped sample of Rb vapor contained in an Ioffe-
Pritchard trap. The jF, mf � � j1, 21�, j2, 1� levels of the
hyperfine multiplet of Rb split by v0 � 6.8 GHz were
used. Almost perfect compensation of the density shift
by spatially varying Zeeman frequency was achieved. The
transition frequency varied along the sample axis by a few
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tens of Hz. The initial inner state with polarization in the
x-y plane was prepared by a p

2 pulse. It was observed that
the polarization does not remain in the x-y plane during
free Larmor precession. This was argued to result from
spatial segregation of atoms with different z spin com-
ponents. However, the confinement potential [16] spin
dependence was very weak, and the best estimate of seg-
regation time due to the Stern-Gerlach effect was at least
an order of magnitude longer than the time �0.2 s of the
z component buildup.

We argue below that the phenomena of Ref. [16] are
explained by the coherent evolution of an atom’s internal
state rather than by mechanical segregation in the gas. The
observed z component profile is readily accounted for by
interatomic exchange coupling. The transition frequency
[16] varies along the sample axis, and a short time after
precession started a gradient of precession angle builds up.
Now, consider two interacting atoms with slightly differ-
ent polarization due to spatially varying Larmor frequency.
The exchange interaction of these atoms leads to preces-
sion of each atom’s spin around the net spin of both atoms
[10]. Since both atoms have transverse polarization, the
precession about a net spin (which is also transverse) will
move the spins out of the x-y plane and both of them will
acquire a finite z component.

Exchange effects can be illustrated by a thought ex-
periment involving a gas of identical atoms with density
n and spin 1�2 contained in a box. Take the spin polariza-
tion s to be purely transverse and the same for all atoms.
For isotropic exchange coupling H � h̄

R
�v0sz�r� 1

l
2 s�r� ? s�r�� d3r the polarization s is uniformly precess-
ing, s�t� � 1

2 n�cosv0tx̂ 1 sinv0tŷ�. Now consider a test
atom passing through the box with spin polarization differ-
ent from that of the other atoms. The test atom spin will ex-
perience an effective “magnetic” field B � v0ẑ 1 ls�t�
with the exchange part ls�t� giving rise to Rabi tran-
sitions. In a Larmor frame rotating with frequency v0
about the z axis the effective field is just ln along the gas
polarization s, time independent in this frame. Since s is
)�230403(4)$20.00 230403-1
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transverse, Rabi transition will generate a z component of
the test atom polarization, even if initially it was in the
x-y plane.

Before accepting this explanation one needs to discuss
energy conservation. The probabilities to find the test atom
in the up and down states after coming out of the box differ
from those in the initial state, since its z spin component
changes. This means that the test atom energy can change
by h̄v0. The total energy of the system, however, does
not change because the spins coupled by exchange precess
together around the net spin so that the total spin is con-
served [10]. The change of the net spin z component in the
box is negative of the test atom spin change, as required
by the energy balance.

Although this is consistent with energy conservation, the
energy change of h̄v0 with v0 � 6.8 GHz much higher
than other frequencies in the system [16] may appear
counterintuitive. The temperature T � 600 nK [16] cor-
responds to kBT�h̄ � 10 KHz; the trap frequencies are
�v�, vz� � �230, 7� Hz. However, the characteristic ex-
change frequency ln 	 140 Hz for the typical density
n � 2 3 1013 cm23 is much higher than the transition
broadening estimated from the precession decay time to
be of order of a few Hz [16]. This makes the exchange
induced Rabi transitions at the energy h̄v0 fully coherent,
despite the fact that h̄v0 ¿ ln.

The length corresponding to one Rabi cycle is

lexch �
yT

ln
� 16 mm, �yT �

p
2T�m � . (1)

This is larger than the sample radius r� � 7.3 mm but
much smaller than the sample length rz � 240 mm. Since
movement of an atom by 	 1

4 lexch is sufficient for rotat-
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ing the spin by p
2 and moving it out of the x-y plane,

the exchange coupling is a viable mechanism for spin re-
orientation in this system.

The separation of Rb atoms into a gas sample and a
test particle in the thought experiment is artificial. The
atoms in [16] share both roles, by inducing precession on
each other via exchange coupling. One therefore has to
consider collective dynamics of atom polarization [1,2].
The Hamiltonian of Rb atoms in a trap has the form

H �
Z √ X

j�1,2
c̄jHjcj 1

X
j,k�1,2

h̄lij

2
:n̂j n̂k :

!
d3r , (2)

Hj � 2
h̄2

2m =2 1 Uj�r�, ljk �
4p h̄

m ajk , (3)

where n̂j � c̄jcj is the density operator. For the
states used in Ref. [16] the scattering lengths are
�a11, a22, a12� � �100.9, 95.6, 98.2�a0 with a0 the Bohr’s
radius.

The polarization of internal states is described by “spin”
operators with components given by Pauli matrices

ŝx� y,z��r� �
1
2

X
j,k

c̄j�r�sx� y,z�
jk ck�r� (4)

and standard spin density commutation algebra

�ŝa�r�, ŝb�r 0�� � i´abgŝg�r�d�r 2 r 0� . (5)

The system [16] is deep in the cold collision regime,
since thermal de Broglie wavelength lT � h�myT 	
4000a0 is much larger than the scattering lengths ajk. We
employ the forward scattering approximation also known
as the random phase approximation [17]. The interaction
can be rewritten in momentum representation as
Z

:n̂j n̂k : d3r �
X

p1p0�p 001p 000

c̄j,pc̄k,p 0cj,p 00ck,p 000 �
X

p,p 0,q

�c̄j,p1
c̄k,p 0

2
cj,2p2

ck,2p 0
1

1 c̄j,p1
c̄k,p 0

2
cj,2p 0

1
ck,2p2

� , (6)
where p6 � p 6 q�2. The first term of (6) accounts for
the forward scattering process, while the second term de-
scribes exchange scattering. Identifying the operators in
(6) with the spin density components (4) we obtain

:n̂1n̂1: �
1
2 �n̂ 1 2ŝz�2, :n̂2n̂2: �

1
2 �n̂ 2 2ŝz�2, (7)

:n̂1n̂2 1 n̂2n̂1: �
1
2 n̂2 2 2�ŝz�2 1 4ŝ1ŝ2 1 4ŝ2ŝ1.

(8)

In the spin representation the interaction has the form

1
2

X
j,k

ljk :n̂j n̂k : �
u

2
n̂2 1 Ln̂ŝz 1 dl�ŝz�2 1 l12s2,

(9)

where u � l11 1 l22 1 l12, L � l11 2 l22, and dl �
l11 1 l22 2 2l12. Spin dynamics is given by ≠t ŝ �
i
h̄ �ŝ,H �, where the commutator can be evaluated with the
help of the relations (5). After taking the expectation val-
ues s � 
ŝ� we obtain a generalized Bloch equation
≠ts 1 �= ? �j � V 3 s, V � �v0 1 dv�ẑ 1 2l12s ,
(10)

with �j�r� � 2
i h̄
2m 
c̄jsjk

�=ck� 1 H.c. the spin current.
Here

dv�r� �
1
h̄ �U1 2 U2� 1 Ln 1 2dlsz. (11)

To make contact with the discussion in Ref. [16] we note
that 1

2n 6 sz � n1�2�, the occupation probabilities for the
up and down spin. Combined with the form of L and dl,
the frequency dv�r� can be rewritten as

dv�r� �
1
h̄ �U1 2 U2� 1 2�l11 2 l12�n1

2 2�l22 2 l12�n2 . (12)

The first term is the Zeeman frequency shift due to the
trap field inhomogeneity, while the last two terms [identical
to Eq. (1) of Ref. [16] ] give the density shift. The term
2l12s in the expression (10) for V�r� representing the ef-
fect of exchange is not considered in Ref. [16]. The role
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of this term is subtle. It drops out from the Bloch equa-
tion (10) for s, since s 3 s � 0. However, since typically
2l12jsj ¿ jdv�r�j, this term should be taken into account
in the Bloch equation for other spin-related quantities, such
as the spin current �j. The torque s 3 j (which in general
is not along the z axis) makes the spin current precess so
that the x, y, and z components intermix.

The transport equation for the spin current �j is derived
in a similar fashion [1,2]. We obtain

≠t
�j 1 a �=s � V�r� 3 �j 2 g �j, a �

1
3y2

T , (13)

where the relaxation rate g is added phenomenologically.
The term a=s arises in a standard way after retaining
the lowest angular harmonics in the transport equation.
In Eq. (13) we ignored the terms such as s=�U1 1 U2�
and nẑ=�U1 2 U2�, since their magnitude is small (see
Ref. [16]). In this approximation, the spin and density dy-
namics decouple, in agreement with the observation [16].

A microscopic calculation of the relaxation rate g in
Eq. (13) is nontrivial. For a spatially uniform system and
spin-isotropic interaction g � 0. Since the interaction pa-
rameters ljk for Rb coincide within 3%, spin is approxi-
mately conserved by elastic collisions. In this case, the
dominant relaxation mechanism is the collisionless Lan-
dau damping [1,9,18]. We use the value g � 20 Hz that
provides the best fit to the data [16].

The transport equations (10),(13) can be simplified for
a one dimensional system [16] by averaging over a sample
cross section. Large exchange ln 	 v� [16] leads to
fast dynamical averaging of spin polarization in each cross
section with parameters slowly varying along the sample
length. In averaging Eqs. (10),(13) we assume Gaussian
density profile n�r� � ne2r2�r2

� . The averaging of the
terms in Eqs. (10),(13) quadratic in density and/or spin is
performed as

R
n2�r� d2r�

R
n�r� d2r � 1

2n, where n is
the peak density. After rescaling all coupling constants

ljk !
1
2ljk (14)

and replacing = by one dimensional ≠x we obtain transport
equations of the Leggett-Rice form [19]:

≠ts 1 ≠xj � �v0 1 gdv�x��ẑ 3 s , (15)

≠tj 1 a≠xs � ��v0 1 gdv�ẑ 1 l12s� 3 j 2 gj , (16)gdv�x� �
1
h̄ �U1 2 U2� 1

1
2 Ln 1 dlsz. (17)

The coupled dynamics of s and j is nonlinear because of
the exchange precession torque l12s 3 j in Eq. (16).

Since gdv�x�,g ø l12n [16], one can simplify the
equations by performing a gradient expansion. We first
go to the Larmor frame rotating with frequency v0,
which eliminates v0 from Eqs. (15),(16). Next, since j
adiabatically follows s, we ignore ≠tj in Eq. (16), solve
it for j in terms of s and ≠xs, and substitute the result in
Eq. (15). This gives the Landau-Lifshitz equation [20]

�≠t 2 ≠xD1�s�≠x �s � �gdv�x�ẑ 2 D2�s�≠2
xs� 3 s , (18)
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D1�s� �
ag

g2 1 l
2
12s2

, D2�s� �
al12

g2 1 l
2
12s2

. (19)

It is convenient to nondimensionalize Eq. (18). We rescale
s by jsjmax � 1

2n, the frequency gdv�x� and the relaxation
rate g by l12jsjmax, and choose

l12jsjmax

a1�2


p
3

2
lexch � 14 mm (20)

as the length unit. Equation (18) preserves its form, with
D2 � 1��g2 1 s2� and D1 � gD2. The dimensionless
damping is g�l12jsjmax 	 0.31 (see Fig. 1).

The results of the numerical simulation of Eq. (18) are
shown in Fig. 1. The spatial and temporal behavior is
similar to that in Ref. [16]: The z component builds up
	 0.2 s after precession started and then gradually decays.

Spin precession becomes synchronized in different parts
of the sample (see Fig. 2), due to compensation of the

transition frequency gdv�x� spatial variation by the ex-
change field l12s�x�. In our simulation, synchronization
takes place independently in the domains with sz . 0 and
sz , 0. Frequency was evaluated as

f �
1

2p du�dt, u � arg�sx 1 isy� . (21)
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FIG. 1. Simulation of Eq. (18) with periodic boundary condi-
tions. Parameters used: constant density n � 2 3 1013 cm23,
exchange frequency l12jsjmax � 70 Hz, spatially varying fre-
quency gdv�x� � 2V cos�2px�L� with V � 20�p � 6.37 Hz
and sample size L � 103 mm. Top: spin distribution evolution
at 0 , t , 0.2 s; bottom: time dependence at x � 0.
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FIG. 2. Top: spin distribution evolution from 0.5 to 0.7 s (with
the same parameters as in Fig. 1); bottom: frequency (21) syn-
chronization at the points marked by arrows.

During the first 0.2 s of the z component buildup the fre-

quency evolves from an initial value f � 1
2p

gdv�x� to a
constant value � 66 Hz in each domain.

While precession frequencies become synchronized, the
phase u varies within each domain producing spin flux
between the domains. Spin density s�x� vanishes at the do-
main boundaries x � 6

1
4 L � 6250 mm (see Figs. 1 and

2). The number of synchronized domains and domain-
specific frequency values in general depend on the ampli-

tude and characteristic spatial scale of gdv�x�.
The mechanism of transverse spin component decay in

the synchronized state is polarization mixing caused by
spin current between different domains. The time scale
of spin decay, set by spin diffusion, is much longer than
the elastic collision time. The z component first builds up
due to spin currents and then decays due to (longitudinal)
diffusion, with characteristic time �L�2p�2g�a � 0.5 s
(see Fig. 1). This is consistent with Ref. [16].

In summary, exchange coupling in a trapped gas leads
to complex collective dynamics of polarization. Polarized
atoms exert torque on the spin current creating a z compo-
nent profile in the presence of spatially varying transition
frequency, in agreement with observations [16]. Surpris-
230403-4
ingly, the buildup of the z component is accompanied by
synchronization of precession frequencies. In the inhomo-
geneous state the sample breaks into two or more synchro-
nized domains. Spin relaxation is caused by spin currents
between the domains.

Synchronized precession should manifest itself in ex-
periment as transition frequency locking to one value in
the entire sample, if it is a single domain. Several synchro-
nized domains formed within the sample will give rise to
several plateaus in the transition frequency spatial depen-
dence. Spin density vanishing between different domains
should be observable by the spatially resolved Ramsey
fringes technique of Ref. [16].

We are grateful to E. A. Cornell and Tin-Lun Ho for
useful discussions.
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