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We consider a single free spin- 1
2 particle. The reduced density matrix for its spin is not covariant

under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning.
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The relationship of thermodynamics to relativity the-
ory has been an intriguing problem for many years [1],
and it took a new twist when quantum properties of black
holes were discovered [2]. In this Letter, we shall investi-
gate a much simpler problem: the relativistic properties of
spin entropy for a single, free particle of spin 1

2 and mass
m . 0. We show that the usual definition of quantum
entropy [3] has no invariant meaning in special relativity.

The reason is that, under a Lorentz boost, the spin under-
goes a Wigner rotation [4] whose direction and magnitude
depend on the momentum of the particle. Even if the ini-
tial state is a direct product of a function of momentum
and a function of spin, the transformed state is not a di-
rect product. Spin and momentum appear to be entangled.
This is not the familiar type of entanglement which can be
used for quantum communication, because both degrees of
freedom belong to the same particle, not to distinct subsys-
tems that could be widely separated.

The quantum state of a spin- 1
2 particle can be written, in

the momentum representation, as a two-component spinor,

c�p� �

µ
a1�p�
a2�p�

∂
, (1)

where the amplitudes ar satisfy
P

r

R
jar �p�j2 dp � 1.

The normalization of these amplitudes is a matter of
convenience, depending on whether we prefer to include
a factor p0 �

p
m2 1 p2 in it, or to have such factors in

the transformation law as in Eq. (9) below [5]. Following
Halpern [6], we shall use the second alternative, because
this is the nonrelativistic notation which appears in the
definition of entropy. We use natural units: c � 1.

Here we emphasize that we consider normalizable
states, in the momentum representation, not momentum
eigenstates as usual in textbooks on particle physics.
The latter are chiefly concerned with the computation of
�injout� matrix elements needed to obtain cross sections
and other asymptotic properties. However, in general,
a particle has no definite momentum. For example, if
an electron is elastically scattered by some target, the
electron state after the scattering is a superposition that
involves momenta in all directions.

In that case, it still is formally possible to ask, in any
Lorentz frame, what the value is of a spin component in
a given direction (this is a legitimate Hermitian operator).
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We show that the answers to such questions, asked in dif-
ferent Lorentz frames, are not related by any transforma-
tion group. The purpose of the present work is to make
a first step toward a relativistic extension of quantum in-
formation theory. The important issue does not reside in
asymptotic properties, but how entanglement (a communi-
cation resource) is defined by different observers. Ear-
lier papers on this subject used momentum eigenstates,
just as in particle physics [7]. Here we show that radi-
cally new properties arise when we consider localized
quantum states.

The density matrix corresponding to Eq. (1) is

r�p0, p00� �

µ a1�p0�a1�p00�� a1�p0�a2�p00��

a2�p0�a1�p00�� a2�p0�a2�p00��

∂
. (2)

The reduced density matrix for spin, irrespective of mo-
mentum, is obtained by setting p0 � p00 � p and integrat-
ing over p. It can be written as

t �
1
2

µ 1 1 nz nx 2 iny

nx 1 iny 1 2 nz

∂
, (3)

where the Bloch vector n is given by

nz �
Z

�ja1�p�j2 2 ja2�p�j2� dp , (4)

and

nx 2 iny �
Z

a1�p�a2�p�� dp . (5)

The reduced density matrix t gives statistical predic-
tions for the results of measurements of spin components
by an ideal apparatus which is not affected by the momen-
tum of the particle. The corresponding entropy is [3]

S � 2tr�t lnt� � 2
X

lj lnlj , (6)

where

lj � �1 6 jnj��2 (7)

are the eigenvalues of t.
It is well known that ignoring some degrees of freedom

usually leaves the others in a mixed state. What is not ob-
vious is that the amount of mixing depends on the Lorentz
frame used by the observer. Indeed, consider another ob-
server who moves with a constant velocity with respect to
the one who prepared the above state. In the Lorentz frame
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where the second observer is at rest, the same spin- 1
2 par-

ticle has a state

f�p� �

µ
b1�p�
b2�p�

∂
. (8)

The transformation law is [5,6]

br�p� � ��L21p�0�p0�1�2
X
s

Drs�L, �L21p��as�L21p� ,

(9)

where Drs is the Wigner rotation matrix [4] for a Lorentz
transformation L (explicitly given in Ref. [6], p. 134).

As an example, consider a particle prepared with spin in
the z direction, so that in the Lorentz frame of the preparer
a2 � 0. The Bloch vector has only one component, nz �
1, and the spin entropy is zero. When that particle is
described in a Lorentz frame moving with velocity b in
the x direction, we have, explicitly,

b1�p� � K�C�q0 1 m� 1 S�qx 1 iqy��a1�q� , (10)

b2�p� � KSqza1�q� , (11)

where we have used the following notations: qm �
�L21p�m is the momentum variable in the original
Lorentz frame, g � �1 2 b2�21�2 � cosha,

C � cosh�a�2�, S � sinh�a�2� , (12)

and

K � �q0�p0�q0 1 m� �p0 1 m��1�2. (13)

The new reduced density matrix t0 is obtained as before
by integrating over the momenta. Consider, in particular,
the case where a1�p� is a Gaussian (a minimum uncertainty
state):

a1�p� � �2p�23�4w3�2 exp�2p2�2w2� . (14)

All calculations can be done analytically. To leading order
of w�m ø 1, we obtain for the new components of the
Bloch vector (defined as above) n0

x � n0
y � 0, and

n0
z � 1 2

µ
w tanh

a

2

¡
2m

∂2

. (15)

In the new Lorentz frame, the entropy is positive:

S 	 t�1 2 ln t� , (16)

where t � w2 tanh2 a

2 �8m2. (Note that if the momentum
has a sharp value, w and t vanish, and therefore the entropy
also vanishes, as expected.)

The reduced density matrix t has no covariant transfor-
mation law, except in the limiting case of sharp momenta
(only the complete density matrix has one). There is an
analogous situation in classical statistical mechanics: A
Liouville function can be defined in any Lorentz frame [8],
but it has no definite transformation law from one frame to
another. Only the complete dynamical system has a trans-
formation law [9].

It is important to understand how linearity is lost in
this purely quantum mechanical problem. The momenta p
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transform linearly, but the law of transformation of spin
components depends explicitly on p. When we compute
t by summing over momenta in r, all knowledge of these
momenta is lost and it is then impossible to obtain t0 by
transforming t. Not only linearity is lost, but the result is
not nonlinearity in the usual sense of this term. It is the
absence of any definite transformation law which depends
only on the Lorentz matrix.

Naturally, linearity is still present in a trivial sense.
If r �

P
cjrj, then likewise t �

P
cjtj, and af-

ter a Lorentz transformation r0 �
P

cjr
0
j, and t0 �P

cjt
0
j . However, even if we know the values of the

coefficients cj, the mere knowledge of the reduced
density matrix t is insufficient to obtain t0 (although
the knowledge of the complete density matrix r does
determine r0�.

In the case investigated above, the entropy computed in
the moving frame is larger than the entropy in the original
frame, which was zero. This does not mean that a Lorentz
transformation always increases the entropy: If we have
a particle in the state br �p� as the one given above, with a
positive entropy, then an observer moving in the 2x direc-
tion with the appropriate velocity would say that its state is
given by as�p�. For that observer, the entropy is zero. An
invariant definition of entropy could be the minimal value
of the latter, in any Lorentz frame. (Likewise, the mass
of a classical system is defined as the minimal value of its
energy, in any Lorentz frame.) Another possibility would
be to use the Lorentz frame where �p� � 0. It is unlikely
that such definitions lead to analytical formulas, although
in any particular case the result can easily be obtained by
numerical methods.

An interesting problem is the relativistic meaning of
quantum entanglement when there are several particles.
For two particles, an invariant definition of entanglement
would be to compute it in the Lorentz “rest frame”
where �

P
p� � 0. However, this simple definition is not

adequate when there are more than two particles, because
there appears a problem of cluster decomposition: Each
subset of particles may have a different rest frame. This
is a difficult problem, which is beyond the scope of
this Letter.

In summary, we have shown that the notion “spin state of
a particle” is meaningless if we do not specify its complete
state, including the momentum variables. It is possible to
formally define spin in any Lorentz frame, but there is no
relationship between the observable expectation values in
different Lorentz frames.
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