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We examine basic properties of complementarity by using the most general description of quantum
observables as positive-operator measures. We show that, in general, two observables can be comple-
mentary or not depending on the measure of fluctuations adopted and that complementarity is not a
symmetric relation. This occurs because the states that determine the measured statistics do not neces-
sarily coincide with the minimum uncertainty states for the same observable. We also show that there
are observables without a complementary observable and that complementarity is not preserved by the
Neumark extensions.
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Complementarity is at the conceptual heart of the quan-
tum theory since it is a direct consequence of the super-
position principle. This concept has no classical analog
and implies that quantum systems possess properties that
are mutually exclusive: The observation of one of them
precludes the observation of the other. In other words,
precise knowledge of one of them implies that all possible
outcomes of measuring the other one are equally probable
[1]. Complementarity is a very intuitive and appealing
concept that has attracted a lot of attention from the begin-
ning of the quantum theory. However, only recently this
concept has been thoroughly scrutinized and formalized.
This examination includes formal definitions, quantitative
assessment, experimental observation, and investigation of
its physical origin [1,2]. It can be appreciated in Refs. [1,2]
that this remarkable effort has been mainly developed in
the past decade.

It must be noted that most approaches to complementar-
ity focus on observables represented by Hermitian opera-
tors. However, in recent times it has been put forward that
this standard quantum-mechanical correspondence is actu-
ally too narrow and does not encompass important physical
quantities such as elapsed time or the harmonic-oscillator
phase, for example. The most general representation of
quantum observables is provided by positive-operator-
valued measures (POVMs), also known as generalized
observables [3]. In this general context, the observables
represented by Hermitian operators are particular ex-
amples arising when the POVM is made of mutually
orthogonal projectors. These are referred to as projection-
valued measures (PVMs).

In this work, we examine which are the basic and uni-
versally valid properties of complementarity when con-
sidering the most general class of quantum observables.
We show that basic properties that are valid for Hermitian
operators no longer apply when considering generalized
observables. More specifically, we show that two observ-
ables can be complementary or not depending on the mea-
sure of fluctuations adopted, that complementarity is not
a symmetric relation, and also that there are observables
without a complementary. Finally, we discuss whether the
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possible noisy character of generalized observables may
explain these results by using Neumark extensions [3].

To begin with, we think it is convenient to recall some
basic properties usually linked to the standard understand-
ing of complementarity that we will show later are valid
only when representing observables by Hermitian opera-
tors (PVMs). For the sake of simplicity and without loss
of generality, we focus on a system describable by a finite-
dimensional Hilbert space. To be more specific, we con-
sider that this space describes an angular momentum j.
We denote by jm�, with m � 2j, 2j 1 1, . . . , j, the or-
thonormal basis defined by the eigenvectors of an angular-
momentum component. As a valid representative of an
arbitrary PVM, we consider M�m� � jm� �mj, and we will
refer globally to this observable as M.

The first property we recall is that there is always a
PVM complementary to M. For example, this is the case
of the PVM defined as K�k� � jk� �kj, where jk� is the
orthonormal basis,

jk� �
1

p
2j 1 1

jX
m�2j

ei�2p��2j11��kmjm� , (1)

and k � 1, 2, . . . , 2j 1 1 are integers. We will refer to this
PVM as K. The states (1) are the angle-phase states for
finite-dimensional systems [4,5]. Since j�k jm�j is con-
stant, we have that for the states conveying precise
knowledge of M (the states jm�) all possible outcomes of
measuring K are equally probable, so that K is comple-
mentary to M. Therefore, every PVM has at least one
complementary PVM.

It is worth pointing out that there is no need to resort to
any measure of uncertainty in order to assert that jm� are
the states conveying precise knowledge of M. Therefore,
for PVMs, complementarity is a property that does not de-
pend on any measure of fluctuations. The last property we
recall is that the complementarity between K and M is ac-
tually a symmetric relation since jk� and jm� can naturally
interchange their roles.

Next we show that these three properties (existence,
symmetry, and irrelevance of uncertainty measures) no
longer apply when considering arbitrary observables. The
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POVMs provide the most general correspondence between
quantum states, represented by a density matrix r, and
the statistics P�x� of a measuring arrangement P�x� �
tr�rD�x��, where D�x� is a family of linear operators.
The natural properties of probabilities (real, positive, and
normalized) are the only requirements imposed on D�x�,
leading to the conditions Dy�x� � D�x�, D�x� $ 0, andR

dx D�x� � I, where I is the identity. This general cor-
respondence encompasses the Hermitian operators as par-
ticular cases (PVMs).

Let us focus on the POVM, which we shall denote as
F, defined as F�f� � jf� �fj, where jf� are the non-
orthogonal and unnormalized vectors,

jf� �
1

p
2p

jX
m�2j

eifmjm� , (2)

and f can take any value in a 2p interval. We stress that
this is not a PVM (it does not admit a Hermitian operator)
since the vectors jf� are not orthogonal �f0 jf� 6~ d�f0 2

f�. Because of this lack of orthogonality, there is no
state having a definite nonfluctuating value for F, and all
states have a probability distribution P�f� � tr�F�f�r�
having a nonzero width [5,6]. In our context, this implies
that there is no trivial answer to the question of which
of the states are conveying precise knowledge of F. On
what follows we will interpret precise knowledge as being
equivalent to minimum uncertainty.

In order to find observables complementary to F, we
have to find the states with minimum uncertainty for F.
This requires that one specify a measure of fluctuations.
This can be done in many different ways, and we can ex-
pect that different measures will lead to different comple-
mentary observables [7]. We demonstrate this point by
considering two particular measures of fluctuations: recip-
rocal peak and dispersion.

According to the reciprocal peak criterion, the states
with minimum uncertainty are those with the highest ab-
solute maximum of P�f� [8,9]. It is easy to see that these
states are the phase states (2). Since j�m jf�j is constant,
we conclude that M is complementary to F.

On the other hand, instead of reciprocal peak we can
consider the dispersion df as a measure of phase uncer-
tainty [9–11]:

�df�2 � 1 2

ÇZ
2p

df eifP�f�
Ç2

. (3)

It can be seen that the states with minimum dispersion
are [12]

jf̃� �
1

p
j 1 1

jX
m�2j

sin

∑
� j 1 m 1 1�

2j 1 2
p

∏
eimfjm� ,

(4)

where f can take any value. For j . 1�2 we have that
j�m j f̃�j depends on m and thus M is no longer comple-
mentary to F. The conclusion is that in the most general
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case two observables are complementary or not depending
on the measure of fluctuations adopted.

This very same example can serve to demonstrate that
complementarity is not a symmetric relation. We have
just shown that the states jm� with well-defined M have
a uniform probability distribution for F and, hence, F

is complementary to M. However, the states jf̃� having
well-defined F (according to the dispersion criterion) have
not a uniform probability distribution for M, and thus M
is not complementary to F.

The origin of this lack of symmetry is that the states
with minimum fluctuations jf̃� can be different from the
states jf� that determine the statistics via projection. They
coincide if the observable is represented by a PVM, but
they can be different when the observable is represented
by a POVM. In other words, the states that represent a
physical quantity when it is measured are different from
the states that carry precise information about the same
quantity. This is a remarkable and an almost paradoxical
result. Further consequences are discussed below.

Finally, we demonstrate that there are generalized ob-
servables without complementarity. Let us consider the
POVM q�V� � ��2j 1 1���4p�� jV� �Vj defined in terms
of the SU(2) coherent states jV� [13]. There are mea-
sures of fluctuations, such as reciprocal peak, that lead to
the SU(2) coherent states jV� as the minimum uncertainty
states. Following such criteria, any potential POVM p
complementary to q should satisfy that �Vjp��� jV� does
not depend on �, where � is the index labeling the ele-
ments of p. Because of the normalization of probabilities,P

��Vjp��� jV� � 1, we have that �Vjp��� jV� does not
depend on V. This means that the SU(2) Q function of
the operators p��� is constant and, hence, p��� is propor-
tional to the identity. Therefore, since the only observable
complementary to q is trivial, we can say that q has no
complementary observables. It is worth noting that the
POVM q�V� is an informationally complete measurement
since the corresponding statistics allows one to determine
the whole statistics of any other observable. In our context
this completeness is reflected by the lack of complemen-
tary observables.

We can recall that every POVM can be represented by
a PVM acting on an enlarged Hilbert space (this is the
Neumark extension, also spelled Naimark in the litera-
ture). In principle, we may expect that this correspon-
dence would be useful to elucidate quantum properties of
POVMs (complementarity, for example) by using the more
standard representation of quantum observables by Hermi-
tian operators. However, the preceding results suggest that
the Neumark extensions do not preserve complementarity.
In what follows, we demonstrate this fact by means of two
particular examples.

To this end, we consider Neumark extensions where the
enlarged space is made of two independent harmonic oscil-
lators with annihilation operators a1 and a2 acting on the
corresponding Hilbert spaces H1 and H2, respectively.
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For the sake of definiteness, we assume that they represent
two quantum electromagnetic field modes. The reduced
system where the POVMs of interest are defined is the
mode a1, while the auxiliary mode a2 is in a fixed state,
the vacuum, for example, j0�2 [ H2. Since the state in
mode a2 is fixed and known in advance, any measurement
performed on the whole systemH1 ≠ H2 can be regarded
as providing information about the state of the signal mode
a1. In this way a PVM in H1 ≠ H2 becomes a POVM
in H1.

After these definitions, we demonstrate that two com-
plementary PVMs in H1 ≠ H2 can give two observables
in H1 that are not complementary. Vice versa, we will
also show that two PVMs in H1 ≠ H2 that are not com-
plementary can lead to two observables that are comple-
mentary in H1.

In order to demonstrate the first statement, let us con-
sider PVMs in H1 ≠ H2 compatible with the total photon
number so that they are given by projection on some or-
thogonal basis of the form

jn, a� �
nX

k�0

cn,k�a� jn 2 k�1jk�2 , (5)

where n represents the total photon number, a is the rest
of the parameters required to suitably label the basis, and
jn�1,2 represent photon number states in the corresponding
mode. Taking into account that mode a2 is always in
the vacuum state, the PVMs jn,a� �n, aj in H1 ≠ H2
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become the following POVMs in H1:

D�n, a� � tr2�j0�22�0j jn,a� �n, aj� ~ jn�11�nj , (6)

which is independent of a. This means that every mea-
surement in H1 ≠ H2 compatible with the total photon
number gives exactly the same reduced observable in H1.
In particular, this applies to two complementary observ-
ables, such as the number difference [cn,k�a� � dk,a] and
the phase difference [cn,k�a� � eiak�

p
n 1 1 ].

Next, we show that two PVMs in H1 ≠ H2 that are
not complementary can lead to two observables that are
complementary in H1. The complementary observables in
H1 are the photon number and the phase variable defined
in terms of the Susskind-Glogower states [4,8,10]:

jw�1 �
1

p
2p

X̀
n�0

einwjn�1 , (7)

where w can take any value in a 2p interval. The phase ob-
servable jw� �wj is a POVM since the Susskind-Glogower
states are not orthogonal. Photon number and phase
are mutually complementary according to the recipro-
cal peak criterion since in such a case the minimum
phase-uncertainty states are the Susskind-Glogower
states (7) and j1�w jn�1j is constant. As their Neumark
extensions, we consider the PVMs defined by the states
jn, m� and jk, w�. The states jn, m� are the simultaneous
eigenstates of the total photon number (with eigenvalue
n) and the operator a

y
1 a2 1 a

y
2 a1 (with eigenvalues m �

2n, 2n 1 2, . . . , n). The states jk,w� are defined as
jk, w� �
1

p
2p

"
jk�1jk�2 1

X̀
��1

�ei�wj� 1 k�1jk�2 1 e2i�wjk�1j� 1 k�2�

#
, (8)
and are the eigenstates of the so-called relative-phase op-
erator expressed in the photon number basis [5,14]. These
are Neumark extensions of the desired observables since
2�0 j n,m� ~ jn�1, and 2�0 j k � 0, w� ~ jw�1.

It is easy to show that these Neumark extensions are not
complementary. For example, we have

�k � 0, w j n, m � n� �
cos�nw�
p

2n21p

µ
1 2

1
2

dn,0

∂
, (9)

which is not a constant.
Finally, we discuss the results presented in this work

and some of their implications. For example, it has been
recently disputed whether complementarity is logically in-
dependent of uncertainty relations [1,2]. The results of
this paper deepen this issue since they imply that even the
very definition of complementarity depends on the mea-
sure of fluctuations adopted. Furthermore, this must have
consequences concerning the quantitative assessment of
complementarity. We can no longer say simply that wave
behavior (represented here by the phase) and particle be-
havior (represented here by the number) are mutually ex-
clusive. The use of epithets such as mutually exclusive or
duality must be revised in light of the results of this work.
Such statements must be accompanied by an explicit and
definite choice of a measure of fluctuations or, otherwise,
they are void of meaning. On the other hand, the lack of
symmetry demonstrated above implies that the two compo-
nents of a pair of dual observables actually play dissimilar
roles.

It must be stressed that the results of this paper do not
occur solely for academic or exotic observables. On the
contrary, we have demonstrated these results by using very
common observables such as number and phase, or angular
momentum and angle.

The POVMs are sometimes characterized as having ex-
tra randomness in comparison to PVMs. It may be asked
whether the results presented in this work are simple con-
sequences of such extra randomness. The additional de-
grees of freedom that cause extra fluctuations are formally
described by enlarging the Hilbert space (Neumark exten-
sions). However, we have just demonstrated above that
the Neumark extensions do not preserve complementarity
so that they cannot explain the complementarity properties
of generalized observables. Therefore, the results of this
work cannot be accounted for easily in terms of extra ran-
domness. In this context, it is worth pointing out that there
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are POVMs that are informationally complete, such as the
one defined by the SU(2) coherent states, which do not fit
with such a noisy picture. It seems that it would be diffi-
cult to remove the alleged randomness without degrading
the information content conveyed by such measurements.

In the above analysis, we have focused on the idea of
complementarity as a property related to the intrinsic sta-
tistical uncertainty of quantum observables. A different
approach focuses on the idea of complementarity as the
result of the disturbance caused by quantum measurement.
Next, we briefly examine this aspect showing that the stan-
dard approach to state reduction does not imply any rele-
vant difference between PVMs and POVMs concerning the
enforcement of complementarity.

To this end, we may consider that the POVM defined
by the states (2) is measured on some initial state jc�.
[Note that we cannot consider a measurement based on
the states (4) since they do not provide a resolution of the
identity.] The most general reduced state (assumed pure
for simplicity) conditioned to the outcome f is given by
the unnormalized vector jc�f�� � jw�f�� �f jc�, where
jw�f�� are arbitrary normalized states. It is worth noting
that the measured observable does not determine the re-
duced states jw�f�� [15]. The key point in our context is
that this is equally valid for PVMs and POVMs. In particu-
lar, the reduced states can be different from the states that
determine the statistics and also different from the states
carrying precise information about the measured observ-
able. Moreover, since the formulas describing state reduc-
tion are formally the same for PVMs and POVMs, we can
refer to previous literature concerning the evaluation of the
system disturbance caused by measurement [16].

*Electronic address: alluis@fis.ucm.es
[1] M. O. Scully, B.-G. Englert, and H. Walther, Nature (Lon-

don) 351, 111 (1991).
[2] X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett.

67, 318 (1991); S. M. Tan and D. F. Walls, Phys. Rev. A
47, 4663 (1993); P. Storey, S. Tan, M. Collett, and
D. Walls, Nature (London) 367, 626 (1994); B.-G.
Englert, M. O. Scully, and H. Walther, ibid. 375, 367
(1995); E. P. Storey, S. M. Tan, M. J. Collett, and D. F.
Walls, ibid. 375, 368 (1995); H. Wiseman and F. Harrison,
ibid. 377, 584 (1995); B.-G. Englert, Phys. Rev. Lett. 77,
230401-4
2154 (1996); L. S. Schulman, Phys. Lett. A 211, 75 (1996);
H. M. Wiseman, F. E. Harrison, M. J. Collett, S. M. Tan,
D. F. Walls, and R. B. Killip, Phys. Rev. A 56, 55 (1997);
P. Knight, Nature (London) 395, 12 (1998); E. Buks,
R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky,
ibid. 391, 871 (1998); S. Dürr, T. Nonn, and G. Rempe,
ibid. 395, 33 (1998); Phys. Rev. Lett. 81, 5705 (1998);
G. Björk, J. Söderholm, A. Trifonov, T. Tsegaye, and
A. Karlsson, Phys. Rev. A 60, 1874 (1999); O. Steuernagel,
quant-ph/9908011; A. Luis and L. L. Sánchez-Soto, Phys.
Rev. Lett. 81, 4031 (1998); J. Opt. B 1, 668 (1999);
S. Dürr and G. Rempe, Am. J. Phys. 68, 1021 (2000);
P. Busch, P. Lahti, J.-P. Pellonpää, and K. Ylinen, J. Phys. A
34, 5923 (2001); P. Bertet, S. Osnaghi, A. Rauschenbeutel,
G. Nogues, A. Auffeves, M. Brune, J. M. Raimond, and
S. Haroche, Nature (London) 411, 166 (2001); M. Mei
and M. Weitz, Phys. Rev. Lett. 86, 559 (2001); A. Luis,
Phys. Rev. A 64, 012103 (2001); J. Phys. A 34, 8597
(2001); S. Dürr, Phys. Rev. A 64, 042113 (2001).

[3] C. W. Helstrom, Quantum Detection and Estimation The-
ory (Academic, New York, 1976); A. Peres, Found. Phys.
20, 1441 (1990); Quantum Theory: Concepts and Meth-
ods (Kluwer Academic, Dordrecht, 1993).

[4] T. S. Santhanam, Phys. Lett. 56A, 345 (1976); S. M. Barnett
and D. T. Pegg, J. Mod. Opt. 36, 7 (1989); D. Ellinas,
J. Math. Phys. (N.Y.) 32, 135 (1991).

[5] A. Luis and L. L. Sánchez-Soto, Progress in Optics, edited
by E. Wolf (Elsevier, Amsterdam, 2000), Vol. 41, p. 421.

[6] M. Grabowski, Int. J. Theor. Phys. 28, 1215 (1989); Rep.
Math. Phys. 29, 377 (1991).

[7] I. Bialynicki-Birula, M. Freyberger, and W. Schleich, Phys.
Scr. T48, 113 (1993); M. J. W. Hall, J. Mod. Opt. 40, 809
(1993).

[8] J. H. Shapiro and S. R. Shepard, Phys. Rev. A 43, 3795
(1991).

[9] Z. Hradil, Phys. Rev. A 46, R2217 (1992).
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