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We propose and study a model of dephasing due to an environment of bistable fluctuators. We apply
our analysis to the decoherence of Josephson qubits, induced by background charges present in the
substrate, which are also responsible for the 1�f noise. The discrete nature of the environment leads to
a number of new features which are mostly pronounced for slowly moving charges. Far away from the
degeneracy this model for the dephasing is solved exactly.
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Any quantum system during its evolution gets entangled
with the surrounding environment. This effect is known
as decoherence [1,2]. Besides the understanding of its
role in many fundamental questions, decoherence is stud-
ied because it will ultimately limit the performance of a
quantum computer [3]. Solid state nanodevices seem the
natural arena to fulfill the requirements of large scale in-
tegrability and flexibility in the design, though, due to the
presence of many types of low energy excitations in the
environment, decoherence represents a serious limitation.
Proposals to implement a quantum computer using super-
conducting nanocircuits are proving to be very promising
[4,5] and several experiments have already highlighted the
quantum properties of these devices [6].

In superconducting nanocircuits various sources of de-
coherence are present [4,7], such as fluctuations originating
from the surrounding circuit, quasiparticle tunneling, fluc-
tuating background charges (BC), and flux noise. In this
Letter we introduce and study a model for decoherence due
to a discrete environment, which describes what is consid-
ered the most serious limitation for Josephson qubits in
the charge regime, i.e., the decoherence originating from
fluctuating charged impurities. The common belief is that
this effect originates from random traps for single elec-
trons in dielectric materials surrounding the island. These
fluctuations cause the 1�f noise directly observed in single
electron tunneling devices [8,9].

The system under consideration is a Cooper pair box [4].
Under appropriate conditions (charging energy EC much
larger than the Josephson coupling EJ and temperatures
kBT ø EJ ) only two charge states are important, and the
Hamiltonian of the qubit HQ reads

HQ �
dEc

2
sz 2

EJ

2
sx ,

where the charge basis �j0�, j1�� is expressed using the
Pauli matrices, and the bias dEc � EC�1 2 CxVx�e� can
be tuned by varying the applied gate voltage Vx. The
environment is a set of BCs electrostatically coupled to
the qubit. The resulting total Hamiltonian is
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Here Hi describes an isolated BC: the operators bi (b
y
i )

destroy (create) an electron in the localized level ´ci. This
electron may tunnel, with amplitude Tki, to a band de-
scribed by the operators cki and c

y
ki and the energies ´ki .

For simplicity we assume that each localized level is con-
nected to a distinct band. An important scale is the total
switching rate gi � 2pN �eci� jTi j2 (N is the density of
states of the electronic band, jTkij2 
 jTi j2), which charac-
terizes the classical relaxation regime of each BC. Finally
the coupling with the qubit is such that each BC produces
a bistable extra bias yi. The same model for the BCs has
been used in Ref. [10] and explains experiments on charge
trapping in systems of small tunnel junctions.

Our aim is to investigate the effect of the BC environ-
ment on the dynamics of the qubit. In this Letter we focus
on decoherence during the quantum time evolution, due to
an environment which produces 1�f noise. Thus we are
concerned with BCs with a distribution of switching rates
�1�g, in the range �gm, gM	 [11].

We used several techniques as second order perturba-
tion theory in the couplings yi , or in the BC band cou-
plings Tki , Heisenberg equations of motion, and a real-time
path-integral analysis [12–14]. The picture which emerges
is that the decoherence produced by each BC depends
qualitatively on the ratio gi � yi�gi , so it is convenient
to distinguish between weakly coupled BCs (gi ø 1) and
strongly coupled BCs (in the other regimes). We stress that
a strongly coupled BC does not necessarily have large cou-
pling yi with the qubit. Indeed in the physical situation we
discuss in this Letter the energy scale associated with the
total extra bias produced by the set of BCs is much smaller

than the level splitting of the qubit,
q

dE2
c 1 E2

J . To sum-
marize our results, we find that, as far as decoherence is
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concerned, a single weakly coupled BC behaves as a source
of Gaussian noise, whose effect is fully characterized by
the power spectrum of the unperturbed equilibrium fluctua-
tions of the extra bias operator yib

y
i bi , given by si�v� �

y
2
i ��2 cosh2�b´ci�2�	gi��g2

i 1 v2�. Each weakly cou-
pled BC contributes independently to decoherence. Instead
our quantum mechanical treatment points out that deco-
herence due to a strongly coupled BC shows pronounced
features of its discrete character, as saturation effects when
gi ¿ 1, and dependence on initial conditions.

We consider, for the sake of clarity, two special opera-
tion points for the qubit: (i) charge degeneracy, dEc � 0,
and (ii) the case where tunneling can be neglected, EJ � 0.
For this latter case, where pure dephasing occurs without
relaxation, we find an exact solution.

(i) Charge degeneracy (dEc � 0).—Relaxation (Gr)
and dephasing (Gf) rates of the qubit given by the golden
rule (GR) [12,13]

G
GR
f �

1
2

GGR
r �

1
4

S�EJ� (2)

depend only on the power spectrum S�v� �
P

i si�v� at
v � EJ . This simple result would readily allow an es-
timate of the rates Gr,f [15] from independent measure-
ments of S�v� [8,9,16]. Being second order in yi, the
golden rule is appropriate only for weakly coupled BCs.
We study the general problem by using the Heisenberg
equations of motion. For the average values of the qubit
observables �sa� (sum over a, b � x, y, z is implicit), we
obtain (h̄ � 1)

� �sa� � EJeab�sb� 1 hab

NX
i

yi�b
y
i bisb� ,

where N is the total number of BCs, and eyz � 2ezy � 1,
and hxy � 2hyx � 1 are the only nonzero entries. On
the right-hand side, averages of new operators which also
involve the localized levels and the bands are generated.
New equations have to be considered and the iteration
of this procedure yields an infinite chain. A closed set
of 3 1 3N equations is obtained by factorization of high
order averages: we ignore the cumulants �by

i bib
y
j bj�c

and �by
i bib

y
j bjsa�c for i fi j and insert the relaxation

dynamics for the BCs in the approximated terms. This
method gives accurate results for general values of gi even
if yi�EJ is not very small, as we checked by comparing
with numerical evaluation of the reduced density matrix
of the qubit with few BCs. The results are presented in
Figs. 1 and 2, where the time Fourier transform of �sz�t��,
proportional to the average charge on the island, is shown.
We assumed factorized initial conditions for the qubit and
the BCs. We first consider a set of weakly coupled BCs in
the range �1022, 10	 EJ which determines 1�f noise in a
frequency interval around the operating frequency. The
coupling strengths yi have been generated uniformly with
approximately zero average and magnitudes chosen in or-
der to yield the amplitude of typical measured spectra
228304-2
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FIG. 1. The Fourier transform sz�v� for a set of weakly cou-
pled BCs plus a single strongly coupled BC (thick line). The
separate effect of the coupled BC (g0 � 8.3, thin line) and the
set of weakly coupled BCs (dotted line) is shown for compari-
son. Inset: corresponding power spectra. In all cases the noise
level at EJ is fixed to the value S�EJ ��EJ 
 3.18 3 1024.

[8,9,16] (extrapolated at GHz frequencies). These BCs
are weakly coupled, and determine a dephasing rate which
reproduces the prediction of the golden rule equation (2)
(Fig. 1, dotted line, G

GR
f �EJ 
 1.65 3 1024� . Now we

add a slower (and strongly coupled g0 � y0�g0 � 8.3)
BC, in order to extend the 1�f spectrum to lower frequen-
cies. The added BC gives negligible contribution to the
power spectrum at EJ so according to Eq. (2) it should
not modify Gf. Instead, as shown in Fig. 1, we find that
the strongly coupled BC alone determines a dephasing rate
comparable to that of the weakly coupled BCs. The over-
all Gf is more than twice the prediction of the golden rule.
If we further slow down the added BC we find that Gf

increases toward values �g0. This indicates that the ef-
fect of strongly coupled BCs on decoherence saturates (we
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FIG. 2. The Fourier transform sz�v� for a set of weakly cou-
pled BCs plus a strongly coupled BC (y0�g0 � 61.25) prepared
in the ground (dotted line) or in the excited state (thick line).
Inset: corresponding power spectra (the thin line corresponds to
the extra BC alone).
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discuss later similar results for the case of pure dephasing,
where this conclusion can be made sharp).

In this regime we also observe effects related to the
initial preparation of the strongly coupled BC (see Fig. 2).
Finally we checked different sets of BCs with the same
power spectrum. They yield larger decoherence if BCs
with g * 1 are present. The golden rule result [Eq. (2)]
underestimates the effect of these strongly coupled BCs.
All the features presented above are a direct consequence
of the discrete nature of the environment.

Pure dephasing (EJ � 0).— In the absence of the tun-
neling term Eq. (1) is a model for pure dephasing. The
charge on the qubit island is conserved, �H , sz	 � 0, but
superpositions of charge states dephase. Hence the off-
diagonal elements of the reduced density matrix of the
qubit in the charge basis, or equivalently the averages of
the raising and lowering operators s6, decay in time.

It is possible to show by direct calculation that, for
a product initial condition, �s6� factorizes exactly
in independent contributions of each BC, �s2�t�� �
�s2�0��

Q
j exp�2i�dEc 2 yj�2�t�fj�t�. Using a real-

time path-integral technique [13], the general form of
fj�t� in Laplace space is obtained:

fj�l� �
l 1 K1,j�l� 2 iyj�2dp0

j

l2 1 �yj�2�2 1 lK1,j�l� 1 yj�2K2,j�l�
,

(3)

where dp0
j � 1 2 2�by

j bj�t�0. The kernels K1,j�l� and
K2,j �l� are given by formal series expressions. An explicit
form is obtained in the noninteracting blip approximation
(NIBA) [13,14], K1,j �l� � gj, K2,j�l� � 2gj�p�c���1�
2 1 b�2p�l 2 iecj���� 2 c���1�2 1 b�2p�l 1 iecj����	.
In order to appreciate the validity of the NIBA result,
we notice that it is also obtained by the Heisenberg
equations with the only assumption being that the band is
in equilibrium.

We now discuss the results in the physically relevant
limit, where the BCs have an incoherent dynamics. In this
case an analytic form for �s2�t�� is found,

�s2�t��
�s2�0��

� e2idEct
NY
j�1

eiyj t�2

3 �Aje
2gj�2�12aj �t 1 �1 2 Aj�e2gj�2�11aj�t�

� exp�2idEct� exp�2G�t� 1 iE�t�� , (4)

where we defined aj �
p

1 2 g2
j

2 2igj tanh�b´cj�2�

and Aj �
1

2aj
(1 1 aj 2 idp0

j gj). This result can be ob-
tained both by approximating the kernel K2,j�l� � K2,j�0�,
valid in the limit ´ci, yi , gi ø KBT , and by the exact
result of a semiclassical analysis. In this last case the
coupling operator

P
i yib

y
i bi is substituted by a classical

stochastic process E �t�, the sum of random telegraph
processes, yielding

�s2�t��
�s2�0��

� e2idEct

øø
exp

∑
2i

Z t

0
dt0 E �t0�

∏¿¿
, (5)
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where ��· · ·�� is the average over the possible realizations
of E �t� with given initial conditions dp0

j .
The form of Eq. (4) elucidates the different roles of

weakly and strongly coupled BCs in the decoherence
process. Dephasing due to each BC comes from the
sum of two exponential terms. If gj ø 1 only the
first term is important, and the corresponding rate is

1��4 cosh2�b´cj�2�	y2

j�gj, the golden rule result. If
gj ¿ 1 the two terms are of the same order, and the decay
rate is �gj , the switching rate of the BC. The main effect
of strong coupling with the qubit is a static energy shift.
That is, for the slower BCs (gj ¿ 1) the contribution to
the decoherence rate saturates to �gj . At short times
t ø 1�gj the initial conditions, which may take the
values dp0

j � 61, determine the transient behavior.
We now apply this result to sets of BCs which pro-

duce 1�f noise. We stress that, while saturation of de-
phasing due to a single BC is physically intuitive, it is
not a priori clear whether this holds also for the 1�f
case, where a large number (�1�g) of slow fluctuators
(strongly coupled BCs) is involved. In Fig. 3 we show
the results for a sample with a number of BCs per decade
nd � 1000 and with yi distributed with small dispersion
around �y� � 9.2 3 107 Hz. Initial conditions dp0

j �
61 are distributed according to �dp0

j � � dpeq, the equi-
librium value. To illustrate the different role played by
BCs with gj ø 1 and gj ¿ 1, we consider sets with
gM � 1012 Hz and different gm. In this case the dephas-
ing is given by BCs with gj . 107 Hz 
 �y��10. The
main contribution comes from three decades at frequen-
cies around �y�. The overall effect of the strongly coupled
BCs (gj , �y��10) is minimal, despite their large number.

Finally we compare our results with the Gaussian
approximation. It amounts to estimating the average
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FIG. 3. Saturation effect of slow BCs for a 1�f spectrum.
Relevant parameters (�y� � 9.2 3 107 Hz, nd � 1000) give
typical experimental measured noise levels and reproduce the
observed decay of the echo signal [9] in charge Josephson
qubits. Couplings yi are distributed with dispersion �Dy��
�y� � 0.2. G�t� is almost unaffected by strongly coupled
charges (the labels are the number of decades included).
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FIG. 4. Ratio G�t��G2�t� for a 1�f spectrum between gm �
2 3 107 and gM � 2 3 109 with different numbers of BCs per
decade: (a) nd � 103, (b) nd � 4 3 103, (c) nd � 8 3 103,
(d) and (d1) nd � 4 3 104, (e) and (e1) nd � 4 3 105. The
solid lines correspond to dp0

j � 61, and the dashed lines cor-
respond to equilibrium initial conditions for the BCs.

in Eq. (5) by its second cumulant and taking dp0
j �

dpeq [17],

G2�t� �
1
p

Z `

0
dv S�v�

1 2 cos�vt�
v2

. (6)

This formula fails to describe BCs with gj ¿ 1. For in-
stance, G2�t� at a fixed t scales with the number of decades
and does not show saturation. The Gaussian approxima-
tion should become correct if the environment has a very
large number of extremely weakly coupled BCs. We check
this limit by comparing G2�t� with Eq. (4). The power
spectrum S�v� is identical for all the curves in Fig. 4 but
is obtained by sets of charges with different nd and �y�.
The Gaussian behavior is recovered for t ¿ 1�gm if nd is
large (all the BCs are weakly coupled). If in addition we
take dp0

j � dpeq in Eq. (4), G�t� approaches G2�t� also at
short times. Hence decoherence depends separately on nd
and �y�, whereas in the Gaussian approximation only the
combination nd�y2�, which enters S�v�, matters. In other
words, the characterization of the effect of slow sources
of 1�f noise requires knowledge of moments of the bias
fluctuations higher than S�v�.

In conclusion, we studied decoherence due to an en-
vironment of bistable charges. We found that the aver-
age coupling between individual BCs and the qubit is an
important scale of the problem: BCs such that gi ø yi

show pronounced features of their discrete dynamics, as
saturation and transient behavior. The physical picture we
obtain for the decoherence effects due to BCs is not sen-
sitive to the details of the model Hamiltonian (1), but is
228304-4
mainly determined by the discrete character of the envi-
ronment. Thus this approach can also be applied to dif-
ferent physical systems as phase qubits in the presence of
flux noise [7].
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