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Pairing of Cooper Pairs in a Fully Frustrated Josephson-Junction Chain
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We study a one-dimensional Josephson-junction chain embedded in a magnetic field. We show that,
when the magnetic flux per elementary loop equals half the superconducting flux quantum f0 � h�2e,
a local �2 symmetry arises. This symmetry is responsible for a nematic Luttinger liquid state associa-
ted with bound states of Cooper pairs. We analyze the phase diagram and discuss some experimental
possibilities to observe this exotic phase.
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During the past twenty years, Josephson-junction ar-
rays have proved to be very good tools to investigate clas-
sical and quantum phase transitions [1]. Recently, much
attention has been paid to systems which display highly
degenerate classical ground states [2] due to the presence
of Aharonov-Bohm cages [3]. Interestingly, a glassy vor-
tex phase without disorder has been predicted for such
two-dimensional (2D) structures [4] in agreement with ex-
perimental observations [5]. In this Letter, we investigate
the influence of quantum fluctuations on such systems in
a 1D model introduced in [6]. In this remarkably simple
example, the huge classical degeneracy is a direct conse-
quence of a local �2 symmetry which is unbroken in the
presence of quantum fluctuations. We show that this may
stabilize an unusual nematic Luttinger liquid (LL) phase
in which charge 4e bound states of Cooper pairs are the
elementary objects.

We consider the chain of loops shown in Fig. 1 em-
bedded in a uniform magnetic field. We denote by f

the magnetic flux per elementary plaquette and we set
g � 2pf�f0, where f0 � h�2e is the superconducting
flux quantum. Each site of this lattice is supposed to be
occupied by a superconducting island. A convenient de-
scription of the low-energy Hilbert space of this system in-
volves local boson operators ayn , byn , cyn �an, bn, cn� that
create (destroy) Cooper pairs on the three types of islands
of the lattice, respectively represented by black, grey, and
white circles in Fig. 1. The system is described by the fol-
lowing Josephson coupling Hamiltonian:

HJ � 2tJ
X
n
ayn �bn 1 cn 1 bn21 1 e2igcn21� 1 H.c.

(1)

We first focus on the special value g � p (half a flux
quantum per loop). As shown in [6], this Hamiltonian
has, in this case, a single-particle spectrum composed of
three highly degenerate flat bands ´0 � 0, ´6 � 62tJ .
The corresponding eigenstates can be chosen as strictly
localized (cage states) around each fourfold coordinated
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site (see Fig. 1). This leads naturally to the notion of
Aharonov-Bohm cages discussed in [3].

Let us introduce the set of boson operators Aya,n �Aa,n�
that creates (destroys) one Cooper pair with energy
´a �a � 0, 6� in a cage state localized around the nth
fourfold site. These operators can be simply expressed as a
linear combination of the operators ayn ,byn , cyn ,b

y
n21, c

y
n21

only, whose coefficients are given in Fig. 1 so that we get

HJ �
X
n,a

´aA
y
a,nAa,n . (2)

In this present form, HJ clearly exhibits a local U(1)
symmetry. We shall now study the effect of boson-boson
interaction on this symmetry. Therefore, we consider a real
valued function n � sn, and we construct a unitary opera-
tor Us defined by UsAa,nU21

s � e2isnAa,n which com-
mutes with HJ . Using the precise form of the cage states,
we easily obtain

Usa
y
nanU

21
s � aynan , (3)

Usb
y
n bnU

21
s � cos2�Dn�byn bn 1 sin2�Dn�cyn cn 1 zn ,

(4)
Usc

y
n cnU

21
s � sin2�Dn�byn bn 1 cos2�Dn�cyn cn 2 zn ,

(5)
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FIG. 1. The chain of loops and the three (non-normalized) cage
eigenstates corresponding to ´0 (left) and ´6 (right). The dashed
lines symbolize the hopping term 2tJe2ig .
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where we have set zn � i sin�2Dn� �byn cn 2 cynbn��2 and
Dn � �sn11 2 sn��2. From these transformation laws,
we can readily see that any interaction term involving
the bilinear operators aymam, byn bn 1 cyn cn preserves the
local U(1) symmetry. Physically, this symmetry implies
that the total number of bosons in each cage is separately
conserved and the system remains an insulator. However,
this symmetry is fragile since it is easy to find two-body
interactions which break it. For instance, a Hubbard-like
interaction term,

P
n�aynan�2 1 �byn bn�2 1 �cyn cn�2, has

this effect which is manifested by the appearance of the
delocalized two-particle bound states discussed in [6].
An exciting feature of this system is that this type of
interaction still preserves a subgroup of the full U(1)
corresponding to a local �2 symmetry. This subgroup
corresponds to sn � 0�p� for all n. With this restriction, it
is easy to check that the operator bymbmb

y
n bn 1 cymcmc

y
n cn

commutes with Us for all �m,n�. This local �2 symmetry
has an important physical consequence since it means that
the parity of the total number of bosons in each cage is
n
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separately conserved. Therefore, if two-particle interac-
tions lead to coherent transport through the chain for a
many-boson system, quasi off-diagonal long-range order
may occur only for composite objects built with an even
number of original bosons, i.e., here, of Cooper pairs. In
other words, a superconducting Josephson-junction chain
with this geometry and half a flux quantum per loop may
realize a quasi-Bose condensate (in fact a LL) of charge
4e composite bosons.

To discuss in more detail the physics of this system,
it is useful to analyze these symmetry considerations for
quantum rotor models. These offer the advantage of an in-
tuitively simple classical limit defined from the phase of a
superconducting order parameter. Formally, we introduce
three phase fields, un, wn, xn, and their canonically con-
jugate fields, Pu,n, Pw,n, Px,n, which are related to the

local Bose operators by ayn � P
1�2
u,neiun , byn � P

1�2
w,neiwn ,

cyn � P
1�2
x,neixn . Assuming that the local particle number

fluctuations are small, we obtain the quantum phase Ham-
iltonian [1]
H �
EC
2

X
n

P2
u,n 1 P2

w,n 1 P2
x,n

2 EJ
X

cos�un 2 wn� 1 cos�un 2 xn� 1 cos�un 2 wn21� 1 cos�un 2 xn21 2 g� , (6)
where EC is the charging energy and EJ is the Josephson
coupling between islands. Note that the present model-
ing of capacitive effects is not meant to be very realistic
since, for the sake of simplicity, we have not taken into
account off-diagonal elements of the capacitance matrix.
This choice corresponds to a local Hubbard-like interac-
tion term between Cooper pairs. For convenience, we setp
ECEJ � 1.
The classical ground state ofH is easily obtained for any

g. Indeed, if we set xn � un11 2 un 2 g�2, and elimi-
nate wn and xn, minimizingH is equivalent to minimizing
F�xn� � 2j cos�xn�2 1 g�4�j 2 j cos�xn�2 2 g�4�j for
all n. As shown in Fig. 2, F has two local minima in
xn � 0 and xn � p. For 0 , g , p, one has
F�0� , F�p�, and the classical ground state is unique (up
to a global U(1) degeneracy). By contrast, for g � p, one
has F�0� � F�p� so that, for a given plaquette, we obtain
two degenerate ground states (up to a global translation
of the phase variables) which are illustrated in Fig. 3.
These states differ only in the sign of the superconducting
currents which circulate around the plaquette. For a
chain made up of N loops, we thus obtain 2N degenerate
classical ground states up to a global translation of the
phase variables.

This huge degeneracy is a direct consequence of a local
�2 symmetry of H. Note that H is not invariant under the
full local U(1) group related to the Aharonov-Bohm cages.
This occurs since the Josephson term in H may be written
as a strongly nonlinear expression of the basic local Bose
operators. For the �2 transformations, it is an easy task to
translate the Us operators in the language of phase vari-
ables. An interesting local �2 transformation is provided
by a kink in the sm’s. Let Un be the transformation defined
by sm � 0 for m # n and sm � p form . n. This trans-
formation does not modify the phase variables for m # n,
whereas it shifts them by p if m . n and it permutes wn
and xn. Thus, its main physical effect is to change the
currents flowing around the plaquette located between n
and n 1 1 into their opposite value. From this descrip-
tion, we deduce that, by starting from a given classical
ground state, we may generate any other ground state by
applying a finite sequence of such Un operators. We also
see that, in the classical limit considered here, the local �2
symmetry is spontaneously broken, yielding ground states
with well-defined local circulating supercurrents. Note that
Un also leaves most conjugate variables unchanged except
Pw,n and Px,n which are exchanged. As a result, we may
add to H any term involving these conjugate fields with-
out breaking the local �2 symmetry, provided the spatial
symmetry between the wn and xn degrees of freedom is
respected. Experimentally, this would require tight control
of offset charges since these may seriously alter an other-
wise excellent geometrical symmetry of the chain.

For real systems, it may become important to take
into account quantum fluctuations of the phase variables,
especially when the superconducting islands are so small
that their charging energy EC can no longer be neglected
in comparison to the Josephson coupling energy EJ . For
a single loop and g � p, these quantum fluctuations
have been shown, theoretically [7] and experimentally
227005-2
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FIG. 2. Behavior of F�xn� for g � 0 (solid line), g � 3p�4
(dashed line), and g � p (dotted line).

[8,9], to induce tunneling between the two degenerate
classical ground states shown in Fig. 3. The true quantum
mechanical ground state is therefore a macroscopic linear
superposition of these two classical states and provides
a simple example of a “Schrödinger cat.” For a system
with N loops, eigenstates are classified according to the
various irreducible representations of the local �2 group
which mix all the 2N classical ground states. One of our
next goals is to describe how quantum fluctuations lift
the degeneracy among these representations, which is an
artifact of the classical limit.

At small g �
p
EC�EJ , the properties of the system

are actually very similar to those of a quantum XY model.
For small g, we thus expect the infinite chain to be in
a LL phase for g , g��g� and in a gapful insulating
(I) phase for g . g��g�. The transition at g��g� is
of a Berezinskii-Kosterlitz-Thouless (BKT) type [10].
Simple spin wave calculations using the harmonic ap-
proximation of H around its classical ground state predict
g��g� �

p
cos�g�4� g��0� with g��0� � p

p
3�2. The

main effect of the magnetic field, in this simple ap-
proximation, is thus to replace g by an effective

FIG. 3. Two possible classical ground states of H with differ-
ent chirality.
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geff � g�
p

cos�g�4� which controls all the correlation
function exponents in the LL phase.

To analyze the effect of the quantum fluctuations in the
vicinity of g � p where the additional local �2 symmetry
emerges, it is convenient to eliminate the twofold coordi-
nated islands to get a simple description of the low-energy
physics of this system. Therefore, instead of H, we now
consider the following Hamiltonian:

HXY �
X
n

g0

2
P2

u,n 2
1
g0

� cos�p�un 2 un11 2 g�2��

1 e cos�un 2 un11 2 g�2�� .

(7)

The parameter g0 is provided by fitting the exponent of the
correlation function �ei�um2un�	 in the semiclassical regime
with its value obtained withH in the harmonic approxima-
tion. This choice leads to g0 � 25�4321�2g. The parameter
e � 4jg 2 pj is determined from the energy splitting be-
tween the two local minima of the single loop potential
energy. Finally, in our case, we have p � 2 but we dis-
cuss hereafter the properties of HXY for an arbitrary p.

The Hamiltonian HXY has a local �p symmetry at
e � 0, corresponding to the local transformations Ta:
uj � uj 1 2paj�p, where aj is an integer. The irre-
ducible representations of this group are easily obtained
in a basis which diagonalizes simultaneously the Pu,j’s.
For a state jc	 such that Pu,jjc	 � ljjc	, where lj
is an integer, we have Tajc	 � exp�i

P
j

2p

p ljaj � jc	.
Writing lj � mj 1 pnj with mj and nj integers and
0 # mj # p 2 1, we find that the set of mj’s completely
specifies the irreducible representation of the local �p
group. For each such representation, the action of the
corresponding projector on the approximate Gaussian
ground state ofHXY produces a natural trial wave function,
at least when g0 ø 1. We have computed the expectation
value of HXY on these states. Doing so, we noticed that
2p�p tunnel processes occurring on different lattice sites
are mostly uncorrelated. Neglecting completely these
correlations we obtain

�HXY 	 �
g0L2

2N
2
Ce2f

g0

X
j

cos

∑
2p

p
�mj 2 L�N�

∏
,

(8)

up to a constant energy independent of the representation
and to factors of order e22f . In (8), L �

P
j lj is the total

angular momentum, C is a number close to 2p2 2 8 at
small g0, and f 
 4p�pg0. The ground state is therefore
obtained by choosing the identity representation of the lo-
cal �p group �mj � 0�.

Next, we see that the term proportional to e couples
different irreducible representations of the local �p group.
When p � 2 the action of this perturbation on the 2N

low-energy trial states just discussed is well described by
a quantum Ising model in a transverse magnetic field:

HI � 2
1
g0

µ
Ce2f

X
n

sXn 1 De
X
n

sZnsZn11

∂
, (9)
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FIG. 4. Schematic phase diagram as a function of
g �

p
EC�EJ , and g � 2pf�f0. LL stands for Luttinger

liquid.

where D is close to 1 for small g0. In terms of these
Ising variables, the local �2 symmetry corresponds to in-
terchanging the j1	 and j2	 states on any given subset
of sites. It is therefore implemented by the sXn operators.
This model has a continuous phase transition (in the uni-
versality class of the 2D Ising model) at its self-dual point
which corresponds to e � �C�D�e22p�g0 . Furthermore, it
is easy to see thatHXY exhibits a BKT transition at g � p
(so e � 0) corresponding to the loss of quasi-long-range
order for the nematic order parameter e2iu. In the har-
monic approximation, this occurs at g̃�p� � g��p��4.

Gathering this information obtained in various limits,
we get the phase diagram drawn in Fig. 4. Besides the two
familiar phases, namely, the (I) phase at large g and the LL
phase characterized by an algebraic order of the eiu order
parameter, the most interesting result is the presence of a
remarkable nematic Luttinger liquid (NLL) phase which
may be viewed as a quasiordered condensate of pairs of
Cooper pairs associated with the order parameter e2iu .

The dotted line (Fig. 4) of a 2D Ising-type separates
the two Luttinger phases. The Ising order parameter is
vanishing in the NLL phase and builds up in the conven-
tional LL phase where its square is proportional to the alge-
braically decaying part of the eiu autocorrelation function.
The physical picture presented here has already been un-
covered by Lee and Grinstein [11] in the framework of a
2D classical XY model with squared cosine interaction. In
their language, the BKT transition from the 2e LL phase
to the I phase involves 2p vortices of the u field, in con-
trast to p vortices between the NLL phase and the I phase.
The nature of the multicritical point Q remains mysterious
to us. Note that the coupling between XY and Ising-like
degrees of freedom has already been extensively stud-
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ied [12–17] in the context of fully frustrated Josephson-
junction arrays. Nevertheless, in these works, the Ising
order parameter has a very different nature since it de-
scribes the possible melting of the vortex lattice. It implies
that the XY transition has to appear at lower temperatures
than the Ising transition [12–14]. In our case and in the
vicinity of g � p, the XY transition occurs for larger g
than the Ising one. So, the effect of the Ising domain walls
on the phase stiffness is very different in the two situations.

To conclude, we have established the possibility of
macroscopic condensation (in the sense of a LL) of charge
4e objects in a Josephson-junction chain for g 
 p.
Experimentally, it may be possible to detect this binding
of Cooper pairs by connecting such a network to super-
conducting leads. Indeed, we expect here a phenomenon
analogous to Andreev’s reflection: an ordinary Cooper
pair of charge 2e entering the chain at low energy (com-
pared to the gap between different representations of the
local �2 group) will leave behind a pair of charge 22e so
that a charge 4e composite object may propagate along the
chain. Another possibility is to close the chain into a large
ring. In this geometry, we expect quantum oscillations
of the global current with respect to the magnetic flux
across the ring with an elementary period f0�2 as long
as g 
 p.
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