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Finite-Size Effects in the Conductivity of Cluster Assembled Nanostructures
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Atomic clusters have been deposited between lithographically defined contacts with nanometer scale
separations. The design of the contacts is based on an appropriate application of percolation theory
to conduction in cluster deposited devices and allows finite-size effects to be clearly observed. It is
demonstrated, both by experiment and by simulation, that for small contact separations the percolation
threshold is shifted to extremely low surface coverages. The selected rectangular contact geometry
ensures that wirelike structures are formed close to the percolation threshold.
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Atomic clusters are nanoscale particles that bridge
the gap between atoms/molecules and condensed matter
and exhibit a range of unusual structural, electronic, and
other properties [1–4]. While these unusual properties
are sometimes “remembered” even in macroscopic cluster
assembled films [4], there have been relatively few
attempts to take advantage of the novel functionality of
clusters by incorporating them in nanoscale devices (see,
for example, [5–10]), and exploration of new, simple,
low-cost fabrication methods is highly desirable. In
addition to “memory effects,” suitable cluster assembled
nanostructures will exhibit distinctive properties that
arise from the small overall system size (i.e., “finite-size
effects” [11]). The range of film parameters that can be
controlled —cluster material, size of cluster, and overall
system size—therefore offers new opportunities [3,12,13]
for engineering nanoelectronic devices whose properties
might eventually be governed by the unusual properties
of the clusters. In this work we begin an exploration of
the possibility of nanodevice fabrication using a straight-
forward cluster deposition technique that avoids laborious
manipulation of the clusters. We focus on the use of
relatively large Bi clusters to investigate finite-size effects
and the formation of cluster assembled nanowires close
to the percolation threshold.

A simple model of a cluster deposited film is a two-
dimensional square lattice where a random fraction p �0 ,
p , 1� of the available lattice sites is occupied. The num-
ber, size, and shape of the connected structures are de-
scribed by percolation theory [14]: in an infinite system the
structures generated by connecting neighboring occupied
lattice sites will be small and isolated for p , pC and form
an infinite network for p . pC , where pC � 0.592 746 1
is the percolation threshold. At the critical coverage pC

a geometrical second order phase transition occurs with
power laws and corresponding critical exponents describ-
ing the behavior of quantities such as the correlation length,
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probability of a site belonging to the infinite network,
and conductivity. According to the universality hypothesis
[15], the critical exponents depend only on a few funda-
mental properties of the respective model (dimension, kind
of interaction) and therefore estimates for the critical ex-
ponents obtained from very simple models can apply to
more complex or experimental systems [16].

In this study we investigate the conductivity of a clus-
ter deposited film with nanoscale overall dimensions (300
to 3200 nm); however, it is important to first discuss a
percolation model which facilitates an understanding of
the design of the experiments and of the experimental
results. We consider rectangular samples with separation
between the contacts L and width of the contacts w ¿ L
(L and w measured in lattice spacings). The contacts
are attached to the long sides of the rectangle so, e.g.,
for L � 5 only five lattice sites fit between the contacts.
Rectangular rather than square arrays have been studied
because of the stochastic nature of the process under con-
sideration. For small systems, statistical fluctuations be-
come increasingly significant and so an estimate of the
expectation value for any quantity can be obtained only
by averaging over many independent samples. While av-
eraging over a large number of square samples is pos-
sible in simulations, it is impractical in experiments due
to time limitations and the difficulty in producing identical
experimental conditions over a large number of runs. Our
rectangular structures, however, intrinsically average over
w�L squares, allowing the collection of data with small
statistical error in a single deposition. More importantly,
the rectangular structures allow the unambiguous obser-
vation of the effect of the finite system size on the on-
set of conduction. The rectangular geometry also ensures
that in each device the first connection between the con-
tacts is formed by a member of the ensemble of square
arrays which creates a more or less direct path between
the contacts.
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The simple site percolation model can be used to cal-
culate the conductivity of a network by assigning resis-
tances to each occupied lattice site. Figure 1 shows results
of computer simulations of the conductivity s (normal-
ized per unit square) as a function of coverage p and con-
tact separation L (for large w). Finite-size effects in the
conductivity are very pronounced; i.e., for smaller contact
separations conduction occurs at a much lower coverage.
Finite-size scaling theory [14] suggests that all finite-size
deviations can be accounted for by the following scaling
ansatz:

s�p,L� � L2t�nfs��p 2 pC�L1�n� , (1)

and this is indeed the case for the data in Fig. 1 ( fs is
a suitable scaling function, t is the critical exponent for
the conductivity, and n is the critical exponent for the
correlation length).

To allow comparison with our experiments, we define
the effective percolation threshold ponset�L� to be the cov-
erage at which the conductivity reaches some value smin,
which could be viewed as the minimum conductivity mea-
surable by the ammeter. The effective percolation thresh-
old then depends on the choice of smin as well as the sys-
tem size L, as illustrated in Fig. 1. Using Eq. (1), it can
be shown that in the limit of small smin, a scaling relation
of the form

ponset 2 pC ~ L2z (2)

holds, with z � 1�n (where n � 4�3 for two-dimensional
lattices). The simulational results can be used to confirm
Eq. (2) by calculating the exponent z as a function of smin.
In contrast to the conventional definition of the percola-
tion threshold for a L 3 w system, where z � 1�n always
[14,17], Fig. 2 shows that for our definition of the perco-
lation threshold z � 1�n only as smin ! 0. In our exper-
iments smin is very small (,1026) and so, for p , ponset,
the measured conductivity is also small (determined by
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FIG. 1. Normalized conductivity as a function of p for four
different system sizes L; the horizontal line indicates a particular
choice of minimum observable conductivity smin and the arrows
point to the corresponding ponset values for each system size as
described in the main text.
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leakage and noise). At the percolation threshold the con-
ductivity jumps to a value s

�
min, which is calculated to be

�1023 in the geometry of our experiments.
To summarize, we have shown that the dependence of

the effective percolation threshold ponset on system size L
should allow the deduction of the exponent for the corre-
lation length, n, from experimental conductivity measure-
ments. Equation (2) represents a well-defined prediction
of how the effective percolation threshold scales with sys-
tem size and therefore forms the basis of an understand-
ing of the cluster deposition experiments. Most impor-
tantly, the simulations suggest that conducting paths can
be formed at low surface coverages by using rectangular
contacts with small separations: in this regime there must
be a wirelike path between the contacts.

In the experiment a beam of bismuth clusters with a
mean diameter of �60 6 10� nm is generated in an in-
ert-gas aggregation source [3]. Deposition onto a substrate
with prefabricated contacts is controlled by a shutter. The
NiCr�Au contacts are defined on highly insulating and flat
surfaces of a 200 nm SiN layer grown on a Si wafer, us-
ing a combination of standard optical and electron beam
lithography (EBL) techniques. Figure 3 shows optical mi-
croscope images of a sample with two pairs of contacts,
prior to deposition. The interdigitated contacts allow for
a high w�L ratio in a compact area. Atomic force mi-
croscopy (AFM) has been used to measure accurately the
contact separations (ranging from 300 to 3200 nm) and
also to characterize contactless, large-area samples consist-
ing of cluster films deposited onto 3 mm 3 3 mm pieces
of SiN. AFM images of the latter films, with a wide range
of coverages (examples are shown in Fig. 4), clearly show
that the bismuth clusters stick to the SiN surface on landing
and do not diffuse and aggregate to form larger particles.

During deposition a dc bias of 1.2 V is applied across
the contacts and the current is measured as a function of

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.004 0.008 0.012

σmin

z

FIG. 2. Scaling exponent z for the effective percolation thresh-
old ponset�L� as a function of the minimum observable con-
ductivity smin [see Eq. (2)]. The solid line is a third order
polynomial fit to the data: the fit intercepts the vertical axis at
z � 0.746 6 0.006 which is consistent with the expected criti-
cal exponent 1�n � 0.75.
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FIG. 3. (a) Double contact arrangement at 503 magnification
showing bonding pads defined by optical lithography. Scale bar
is 800 mm. (b) Same structure at 10003 magnification showing
interdigitated contact arrangements defined by EBL. Scale bar
is 40 mm. Separation between the contacts is 800 nm (top) and
3200 nm (bottom).

deposition time. Initial measurements were performed on
samples with a single pair of contacts and Fig. 5(a) shows
typical experimental data. At a clearly defined time dur-
ing the deposition the cluster network becomes conducting
over the length scale defined by the separation of the con-
tacts and the current suddenly increases over several orders
of magnitude. After the onset of conduction the current in-
creases only slowly.

In principle the onset time can be related directly to
the critical coverage ponset�L� through the deposition rate.
Unfortunately it is very difficult to compare the deposition
rates for depositions on single contact pairs due to nonuni-
formity in the cluster intensity laterally across the beam.
The double contact pair arrangement shown in Fig. 3
eliminates that problem and has been used for all further
experiments. The two contact pairs with different sepa-
rations are defined very close together (40 mm apart), so
that the cluster flux is the same for both, and the different
onset times can directly be observed in the same run.
For each sample, one pair of contacts was defined with
a separation of 3200 nm and was used as a reference,
thus calibrating the onset time obtained for the contacts
with smaller separation. The ratio of the onset times
gives immediately the ratio of the critical film thicknesses
dC �L��dC�3200 nm�. The data for a number of samples
are plotted in Fig. 5(b), normalized to the critical film

FIG. 4. AFM images of two large area cluster films with very
different coverages. Each square has side 2 mm. The gray scale
range represents a height of 50 nm. See text.
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thickness for infinite contact separation dC�`� [18]. Since
the surface coverage p is proportional to the mean film
thickness, Eq. (2) can be rewritten as

dC�L� 2 dC�`� ~ L2z , (3)

which describes the experimental data very well with a
fitted exponent z � 0.610.3

20.2. The experimental value for
the exponent z is consistent with the value 1�n � 0.75
predicted from our simulations for small smin.

The quantitative agreement between the experiments
and simulations is a strong indication that the simple 2D
site percolation model and the experimental system of
bismuth clusters on a SiN surface belong to the same uni-
versality class [15]. In view of the obvious differences be-
tween the model system and the experimental one, this is
in many ways a rather surprising result. That said, various
other examples of universal behavior have been reported
previously in very different types of experimental systems
[16,19].

Although there have been several previous reports of
ingenious experiments which allow the conductivity of a
macroscopic percolating network to be measured (see, for
example, [20–22]), and many measurements of percolat-
ing granular or nanocomposite films (see Ref. [23] and ref-
erences therein), there has been no previous experimental
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FIG. 5. (a) Current, I , as a function of time, t, for bismuth
clusters deposited on a single set of contacts with separation
1600 nm. (b) Normalized critical film thickness dC�L��dC�`�
as a function of system size L (contact separation). The solid
line is a fit using Eq. (3); see text.
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measurement of the shift of the percolation threshold with
changing system size, or of the critical exponent for the
correlation length, n. Our choice of a rectangular system
is critical in allowing us to address this issue.

The present work can be regarded as a direct experi-
mental confirmation of the finite-size effects predicted
by percolation theory. It also provides one of only a
very few examples of a phase transition where the re-
sponse to a variation of the system size is experimentally
accessible [24].

The I�t� data shown in Fig. 5(a) will be discussed in
more detail elsewhere; however, the random steps in the
current for p . ponset should be mentioned briefly. We
believe that increases (decreases) in the current result from
completion (destruction) of pathways in the film. This
view is supported by I�V� data for samples from runs in
which deposition is stopped soon after the onset of con-
duction: these data show generally Ohmic behavior as
well as sharp increases and decreases in the conductance
of the film.

Finally, we highlight the fact that, for low surface cov-
erages �p � 0.25�, a connection between the contacts can
be formed only by a wirelike chain of clusters. By us-
ing state-of-the-art electron beam lithography to fabricate
contacts with spacings �10 nm, similar, but much smaller,
nanowire structures should be achievable using clusters
with diameters of a few nanometers. In general, devices
fabricated from such small clusters would be necessary to
observe memory effects. However, the present devices,
which incorporate much larger ��60 nm� Bi clusters, may
be interesting in their own right because the electron mean
free paths and Fermi wavelengths in bismuth [25] are com-
parable to these cluster sizes.

Our method for the fabrication of cluster assembled
nanostructures is attractive because it combines some of
the advantages of both the “top-down” and “bottom-up”
approaches to nanotechnology. In particular, the use of
standard lithography techniques provides a simple and reli-
able method for the definition of the overall device geome-
try (and size), and the use of clusters offers the opportunity
for nanometer scale minimum feature sizes (wire widths).

Cluster assembled devices may have a wide range of
applications. In particular, the devices offer opportunities
for simple chemical sensors (similar to those reported in,
for example, [26]), and specific field effect transistor struc-
tures based on these devices may also be realizable.
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