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We consider a resonant level coupled to a chiral Luttinger liquid which can be realized, e.g., at a
fractional quantum Hall edge. We study the dependence of the occupation probability n of the level on
its energy & for various values of the Luttinger-liquid parameter g. At g < 1/2, a weakly coupled level
shows a sharp jump in n(e) at the Fermi level. As the coupling is increased, the magnitude of the jump
decreases until \/2g, and then the discontinuity in n(e) disappears. We show that n(g) can be expressed
in terms of the magnetization of a Kondo impurity as a function of magnetic field.
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The transport of electrons in low-dimensional structures
is strongly affected by electron-electron interactions. This
effect is particularly strong in one-dimensional (1D) sys-
tems, where the interacting electrons form the so-called
Tomonaga-Luttinger liquid [1]. The main feature of this
system is the power-law suppression of the tunneling den-
sity of states at low energies. This effect has been recently
observed experimentally in 1D electron systems realized
in quantum Hall edges [2], carbon nanotubes [3,4], and
quantum wires [5].

A generic property of mesoscopic devices is the pres-
ence of imperfections that affect the transport of electrons.
The most important are the defects that form energy levels
near the Fermi level and give rise to a strong scattering of
electrons. In this paper, we consider a single level coupled
to a 1D system exhibiting Luttinger liquid behavior. The
level can be caused either by a random impurity or by an
artificially created quantum dot near the 1D system. Re-
cently, electron transport through a resonant level coupled
to two Luttinger-liquid leads was studied both experimen-
tally [5,6] and theoretically [7-9].

In contrast to the previous theoretical work [7-9], we
study a resonant level coupled to a single 1D conductor.
The quantity of interest is the occupation probability n of
the level as a function of its energy & (measured from the
Fermi level). Clearly, at large positive energy e the level
is empty, n = 0, and at large negative energy it is filled,
n = 1. If the level is coupled to a Fermi-liquid lead, n(s)
changes continuously from O to 1 when the energy ¢ is
within the level width I' from the Fermi level:
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We show below that the dependence n(g) is modified sig-
nificantly in the case of coupling to a Luttinger-liquid lead.
Most importantly, if the interactions are strong enough,
n(e) has a discontinuity at & = 0.

We model the level coupled to a 1D conductor by the
Hamiltonian H = Hy + H,, where
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The first term in Eq. (2) describes the resonant level with
energy &; the fermion operator a! creates an electron
in this state. The second term in Eq. (2) describes
the Tomonaga-Luttinger liquid in the lead in terms of
a chiral boson field ¢(x) with commutation relations
[e(x), o(y)] = imsgn(x — y).  The chiral Luttinger
liquid model is the most natural description of fractional
quantum Hall edge states [10]. In the case of a nonchiral
1D system coupled to the level at only a single point
x =0, one can neglect the “odd” bosonic modes and
convert [11] the Hamiltonian to the chiral form (2). The
Hamiltonian H, describes the tunneling of the electron be-
tween the level and the point x = 0 in the 1D system. We
use the standard bosonized expression for the annihilation
operator ¢ of an electron in the chiral Luttinger liquid in
terms of the field ¢(x), the Luttinger-liquid parameter g,
the bandwidth D, and the Fermi velocity v. In this paper,
we consider only the case of spinless electrons. Many of
our results are not sensitive to this assumption. Also, in
the case of tunneling into edge states of the quantum Hall
system with filling factor g < 1, all electrons are spin
polarized by the magnetic field. In other cases, the level
can be polarized by applying the magnetic field.

We first calculate the occupation probability n(e) in the
second-order perturbation theory in H;. At & > 0 the re-
sult has the natural form,

o r * Vg(a))
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Parameter I" = #2/2/iv has the physical meaning of the
level width in the Fermi-liquid case g = 1. The tunneling
density of states v,(w) of the Tomonaga-Luttinger liquid
has the well-known form

1 <|w|>“/g>‘1 eliD (5
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where I'(x) is the gamma function. Because of the
electron-hole symmetry of the problem, the occupation

Vg(a)) =
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probability at negative energies can be found as
n(e) =1 — n(—¢). At g =1, Eq. (4) coincides with
expansion of the Fermi-liquid result (1) at ¢ > T'.

At g > 1/2, the integral in Eq. (4) diverges at ¢ — 0.
This means that, in order to find n(e) near the Fermi level,
one has to sum up the whole series of the perturbation
theory in 7. On the other hand, at g < 1/2 the integral
is convergent at all €; i.e., for a weakly coupled level the
second-order perturbation theory is sufficient to describe
n(e) at any energy. For instance, at ¢ — +0, we find

g T
(1l —¢g)(1 —2¢) D
At ¢ < D the occupation probability approaches its limit
(6) following a power-law dependence:

n(+0) = (6)
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Since n(+0) # n(—0) = 1 — n(+0), the system reaches
two different ground states at € — *0, and the occupa-
tion probability n(g) experiences a finite discontinuity at
the Fermi level: A = n(—0) — n(+0). The divergence
of the perturbation theory at g > % indicates that in this
regime the coupling of the level to the lead is a relevant
perturbation that should lift the degeneracy of the ground
state at & = 0, resulting in continuous n(g). This can be
shown formally using the mapping to the Kondo problem
discussed below.

As the coupling I" of the level to the 1D system grows,
the magnitude of the jump A = 1 — 2n(+0) at g < %
decreases. We will now show that at a sufficiently strong
coupling the jump disappears. Let us consider a semi-
infinite quantum wire in the region x > 0 with a scatterer
at point x = L. The system is described by the Tomonaga-
Luttinger model with a scatterer:

hv (“T1(d0\ (d¢)
H = i . [g(d_x> +g<d—f> }dx—wcos(Zﬂ'N).
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Here N = [kpL + 6(L)]/a is the number operator of
electrons in the region 0 < x < L. The fields # and ¢ sat-
isfy the commutation relation [6(x), ¢ (y)] = (i7/2)[1 +
sgn(x — y)] and the boundary condition §(x = 0) = 0.
If the scatterer is very strong, w — o, it effectively
cuts the region 0 < x < L from the wire. This region
becomes a quantum dot, coupled to the rest of the wire
by tunneling through the barrier created by the scatterer.
At large w the field 8 at point x = L is pinned at one of
the values 6(L) = 7m — kpL, where integer m is the
number of electrons in the dot. The ground state energy
of the dot is then E,, = (hv/2mwgL) (wm — kgL)?. For
a given L, the number of electrons in the dot that mini-
mizes E, is the integer nearest to kpL/7r. One can
easily check that, at kpL/7m = M + % — 2L g with
integer M and positive &, the ground state of the dot has
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m = M electrons, and the energy of adding (M + 1)st
electron is Ey+1 — Ey = €. Thus, at large w the
Hamiltonian (8) is equivalent to the model (2), (3) of a
resonant level coupled to a 1D system [12].

One can now increase the coupling by lowering w.
In the limit of very strong coupling, w — 0, the scat-
tering term in the Hamiltonian (8) can be accounted
for in first-order perturbation theory. In an infinite 1D
system, the thermal average of the scattering poten-
tial shows power-law behavior at low temperatures as
(T/D)8w cos(2kgL). However, if the distance L from
the scatterer to the end of the wire is finite, the renor-
malization of the scattering potential is cut off at the low
energy scale equal to the level spacing in the dot, ~/iv /L.
Although the renormalization of the scattering potential
in a semi-infinite wire may be large, it remains finite, and,
at sufficiently small w, one can use the first-order result
SEy ~ (hv/LD)3w cos(2krL). Thus, at strong coupling
the energy is an analytic function of krL which shows
no singularities at degeneracy points kpL = 7(M + %),
where ¢ = 0. The analyticity of Ey(e) means that the
ground state is nondegenerate, and the occupation proba-
bility n(g) = 9E/de [see Egs. (2) and (3)] is continuous.

From the perturbative calculations in the weak- and
strong-coupling limits, we deduce a schematic phase dia-
gram, Fig. 1. The occupation probability n(e) is a continu-
ous function of € at g > % (including the Fermi-liquid case
g = 1) and also at g < %, if the coupling to the lead is
sufficiently strong. On the other hand, if g < % and the
coupling is weak, n(e) has a discontinuity at ¢ = 0. As
the coupling is increased at g < %, the discontinuity A de-
creases until the phase boundary is reached, above which
A = 0. We now show that A is not a continuous function
of the coupling strength and that just below the boundary
A= 2g.

Let us consider a level relatively weakly coupled to the
lead with g < % The presence of a jump in the occupa-
tion probability n(e) means that at ¢ = 0 the ground state
of the system is degenerate. One could expect that tunnel-
ing term (3), which couples the two degenerate states by

I'/D

0
0 Il g

FIG. 1. Schematic phase diagram. Insets show the behavior
of the occupation probability n(e). The discontinuity occurs at

g < % and weak enough effective coupling I'/D.
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moving an electron from the level to the lead, would lift
the degeneracy. This does not always happen because the
tunneling of an electron into a Tomonaga-Luttinger liquid
is suppressed at low energies, leading to the renormalized
level width I'(g) o &?. Thus, at y > 1 the coupling is ir-
relevant, as it is much smaller than the level separation ¢.
In the opposite case of vy < 1, the width is much larger
than the level separation at € — 0, so the degeneracy of
the ground state is lifted. Thus, at the phase boundary in
Fig. 1 the exponent y = 1.

At t — 0, the suppression of tunneling manifests itself
in the power-law behavior of the density of states (4).
Thus, the exponent y = é — 1, and the condition y > 1
of the degenerate ground state reproduces our earlier result
g < % At t # 0 the virtual hopping processes smear the
quantization of the charge, and at low energies the pertur-
bation H, transfers only a fraction A of an electron charge
into the lead. Mathematically this can be accounted for
by a renormalized coupling term H, « t[atei¢©2/VE +
H.c.], cf. Eq. (3). Thus the exponent of the tunneling den-
sity of states becomes y = 2 — 1 when only a fraction
A of the electron charge is transferred. At the phase bound-
ary the condition y = 1 is then equivalent to A = |/2g.

The phase diagram [Fig. 1] and the critical value of the
jump A = /2g at the phase boundary are the main results
of this paper [13].

One can also study how n(e) approaches the discontinu-
ity at & = 0 anywhere below the phase boundary in Fig. 1.
The discussion is essentially identical to the one leading to
Eq. (7) at + — 0. By substituting »(w) * @? instead of
(5) into (4), we find at small positive & and for A > ,/2g,

1—A
2

Additional support for the above results is found
by mapping our model to two well-known problems:
a two-level system with Ohmic dissipation and the
Kondo problem. Let us define a unitary operator
U, = explie(0)S*/,/g], where §* = ata — 1/2. Uni-
tary transformation of the Hamiltonian (2), (3) yields the
Hamiltonian of the two-level system:

— n(e) = gmin{(A%/g)=2.1} )

2 B de) |

mhv NG dx

where $* = (a + a')/2. The second term describes hop-
ping of a particle between the two levels, S* = * %, and
the third term is the coupling to harmonic oscillators with
dissipation strength @ = 1/2g [14]. It is known that there
is a quantum phase transition between a phase where a
particle is localized in one of the two levels and another
phase where it is delocalized. In the limit t — 0, the tran-
sition occurs at @« = 1 [14], in agreement with our weak-
coupling result [15]. Our analysis suggests that, as the
coupling ¢ is increased in the localized phase, the differ-
ence A of the averages (S%) over the two ground states at
& = 0 will decrease from 1 to /2g = a~ /2, after which

the system will suddenly delocalize, A = 0. To the best of
226404-3

U;rHUl = Hy +t const,

our knowledge, only a brief discussion [16] can be found
in the literature on the £ dependence of the ground-state
average (S°) at « = 1 — 7, and the result is consistent
with A = a~1/2 to linear order in 7).

To understand the connection to the Kondo
problem, let us introduce another operator U, =
U, exp[—i+/2 ¢(0)S?]. Unitary transformation yields

D . .
U;HUZ =Hy +1t —(S"'el\/iéﬂ(o) + S—e—z\/iqo(o))
27 hv

1
— hv(— - \/§>Sz de© + const, (10)
NG dx
where ST = a' and S~ = a. Equation (10) is also ob-
tained by bosonizing the anisotropic Kondo model describ-

ing electrons scattered by a spin—% impurity,

Hg = f ekt iy dk+ﬁ 1iS'alal yap, dk di'
+ &S57%,

where €; = fivk, o' is the Pauli matrix, and summa-
tion over repeated indices is assumed (w, v =1, and i =
x,Y,z). The Kondo couplings J; are given by

2mhv —or 1
D’ J, =2m v(l m) 11
where J, = J, = J,. The occupation probability n(e) is
directly related to the magnetization M of the impurity
spin S coupled to the Zeeman field &: n(s) = M(e) +
1/2. The phase diagram [Fig. 1] is easily understood
from the renormalization-group flow diagram of the Kondo
problem. The phase of a smooth n(g) curve corresponds
to the antiferromagnetic Kondo coupling, J, > —|J|. In
this case the impurity spin is completely screened as the
magnetic field ¢ is turned off: M (£0) = 0. At g —
% < 1 in the weak-coupling limit, I' << D, one can easily
obtain n(e) from the Bethe ansatz results [17] for M (g).

The phase of a discontinuous n(e) curve in Fig. 1 cor-
responds to the ferromagnetic Kondo case, J, < —|J |,
where the spin flip coupling J, is renormalized to zero.
One might then naively expect a full moment to appear:
M = —sgn(g)/2. This is not correct, however, as we
have seen in Egs. (6) and (7). In the weak-coupling
regime, we may use one-loop scaling equations for
j i = J i / 2mhv:

J. =1

dj, .. dj, 2 dM 2

Vi i _ 9 =~ =

dl J L]z dl .]JJ dl ]LM ’
where dl = —dInD. For |j, | = —j, we integrate them

to I = In(D/e) with initial condition M = —1/2. We

find 2M (g) = —exp(j. — jI), where

J: _jo— ¢+ (c+j)(e/D)¥ _\/.2_ 2
- — : 4¢° ¢ = .]z J1l>

c ¢ —j, +(c+j,)(e/D)

in agreement with Ref. [16]. To lowest order in % - g,

this one-loop result is consistent with Eq. (9). In particu-
lar, at the transition point j; = j,, the magnitude of the
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magnetization jump A = M(—=0) — M(+0) =1 + j,
agrees with our conjecture /2g = (1 — j.)~! in the first
order in j,. Approach to the zero-field value is logarith-
mically slow at the transition point: M (g) — M (+0) «
1/1ng for € > 0. It is worth mentioning that in the ferro-
magnetic case the magnetization is a nonuniversal quantity.
In particular, models with different bandwidth cutoffs have
values of M different by ~j2. To be precise, our mapping
is to the bosonized Kondo model (10).

The magnetization jump in the ferromagnetic Kondo
model is also related to the problem of a classical Ising
chain with inverse-square interaction [18], whose reduced
Hamiltonian is BH; = —KZ,->J- sisi/li — jI? si = 1.
The connection is established by expanding the partition
function of the Kondo model in powers of J,, which is
then identified with that of the Ising chain at K = 1/4g
with additional short-ranged irrelevant interaction that
depends on J, and bandwidth cutoff. The 1D Ising
model with 1/72 interaction has a finite-temperature phase
transition [18]. Below the transition temperature, or when
K > K., the Ising spins are ordered with a nonvanishing
order parameter ¥ = K(s;)*>. The order parameter van-
ishes discontinuously as the coupling K is reduced through
the K., a 1D analog of the universal jump at the Kosterlitz-
Thouless transition. It has been shown rigorously that
W = 1/2 in the ordered phase [19]. Although un-
proved rigorously yet, it is believed that W = 1/2
at K = K., which has been confirmed recently by a
large-scale numerical simulation [20]. This means that
M(=0) — M(+0) = (s;) = /2g, in agreement with
our analysis. Note that the external parameter driving
the phase transition is K in the Ising model whereas it is
I'/D in our model of a level coupled to a 1D lead.

Thus far, we have ignored Coulomb repulsion between
the resonant level and the 1D lead. Assuming that the in-
teraction is short ranged due to screening effects, we may

model it by H, = uSzdfl—)(CO). Since the unitary transfor-

mation gives U21L H,U, = H, + const, the effect of the
Coulomb repulsion is to change the Kondo coupling, J, —
J, + 2mru. This gives rise to a shift of the phase bound-
ary in Fig. 1 toward smaller g. In particular, at t — 0 the
phase boundary is at g = %(1 + 7-)"2. Physically, this
shift is due to Mahan’s excitonic effect [1] that enhances
tunneling probability.

It was recently demonstrated [21,22] that the charge of
a quantum dot coupled to a Fermi-liquid lead can be mea-
sured with the aid of an electrometer based on a single
electron transistor. To test our theoretical predictions, one
could perform a similar experiment with a lead in the
fractional quantum Hall regime. A small dot coupled to
the edge state in the lead would then play the role of the
resonant level. In this setup, one can vary the parameter g
of the chiral Luttinger liquid in the edge state by adjusting
the magnetic field. The strength of the coupling of the dot
to the edge state in a GaAs heterostructure can be tuned
by changing the appropriate gate voltage.

226404-4

In conclusion, we have shown that, in the region of
parameters shown in the phase diagram [Fig. 1], the oc-
cupation probability n(g) of a resonant level of energy &
coupled to a Luttinger-liquid lead is a discontinuous func-
tion of . The height of the discontinuity in n(e) at ¢ = 0
reaches /2g at the phase boundary. This picture is sup-
ported by mapping to a Kondo model, and interesting
connections can also be made to the problems of the dis-
sipative two-level system and the classical Ising chain with
inverse-square interaction.
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