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Singular Effects of Impurities near the Ferromagnetic Quantum-Critical Point
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Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the
thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic
transition are obtained. In the quasiclassical regime, the dynamical spin fluctuations enhance the Kondo
temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties
are those of a line of critical points of the multichannel Kondo problem with the number of channels
increasing as the critical point is approached, except at unattainably low temperatures where a single
channel wins out.
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The asymptotic low temperature singularities in the ther-
modynamic and transport properties of many solids appear
to be due to impurities [1]. While several impurity models
have quantum-critical points (QCP), where such singulari-
ties may be expected, they require special symmetries
unlikely to be present in real systems [2]. An alternate
possibility is that the pure system is near a QCP, so that
singular low energy fluctuations are present [3–5]. We
investigate the possibility in this paper that such fluctua-
tions drive the effects of a dilute concentration of ordinary
impurities (not requiring any special symmetries) so that
the resulting observable properties are much more singular
than those near pure QCP [6,7].

For coupling to nonmagnetic impurities, a general ar-
gument on the renormalized impurity scattering was given
in relation to insulating behavior in marginal Fermi liq-
uids [8]. It was recently proposed that critical fluctuations
enhance potential scattering from nonmagnetic impurities
so that the residual resistivity increases as the QCP is ap-
proached [9].

Here we investigate the effects of magnetic impurities
near a ferromagnetic QCP. The problem is especially in-
teresting for a number of reasons. First, it couples the
quantum fluctuation or Kondo effect of magnetic impuri-
ties to the singular quantum fluctuations of the pure system.
Second, since the transition is at q � 0 and the order pa-
rameter is conserved, conservation laws or Ward identities
can be used to obtain systematic results for the effect of
impurities just as they are available for the pure ferromag-
netic QCP. Third, experimental results on extraordinary
pure samples of a ferromagnet-MnSi [10,11], which has
a QCP as a function of pressure, are in good accord with
the theory [4]. A few results on less pure MnSi are avail-
able [11], which show interesting deviations from that of
the purer samples near the QCP. We hope our results will
serve as an impetus to further experimental results.

Figure 1 presents a schematic phase diagram around a
pure ferromagnetic QCP at r � 0 where r is a “disorder-
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ing” parameter, pressure for MnSi. The crossover between
the regimes I and II occurs at T ~ j23�T�, where j is the
magnetic correlation length [3]. In the pure limit, in the
quantum-critical regime, the pole in the fluctuation spectra
x�q,v� has a dispersion v � q3, so that the dynamical
critical exponent zd � 3. Correspondingly, j�T � � T22�3

in the region I. In the region II, j � r21�2 at low T .
The problem of magnetic impurities was looked at long

ago by Larkin and Mel’nikov [12]. We have obtained some
new results. In the regime I, the net result of enhanced dy-
namical spin fluctuations at low energies and of a decreased
high frequency cutoff is to enhance the Kondo tempera-
ture. In the regime II, this enhancement decreases rapidly
and an ordinary S � 1�2 magnetic impurity necessarily
scatters in many angular momentum channels because of
the increasing magnetic correlation length with the num-
ber of channels diverging as r ! 0. The crossover from
the multichannel to the single-channel behavior occurs at
unattainably low temperatures.

We consider the model of S � 1�2 magnetic impuri-
ties coupling to the host electrons by the Hamiltonian
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r

T

I

QCP
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FIG. 1. A schematic phase diagram near a ferromagnetic quan-
tum critical point.
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We assume that the dynamical spin susceptibility of the
pure system is given by

x�q,v� � x0k
2
0�k2 1 q2 2 iv�Γq�21, (2)

where x0 is the magnetic susceptibility of the noninteract-
ing system, k0 is of the order of the Fermi wave number
pF, and k � k�T� is the inverse of j�T � [4]. Hereafter, r
is defined by r � k2�T � 0��4p2

F.
For coupling to magnetic impurities, the vertex renor-

malization L�s��p,√��L�s�
0 is given by a formally exact

expression in terms of the irreducible part L̄�s��p,√�:

L�s��p,√�

L
�s�
0

�

µ
1 1 a

x�√�
x0

∂
L̄�s��p,√�

L
�s�
0

, (3)

where a is the coupling constant between the host elec-
trons, a � 2Ux0 for the Hubbard interaction. We have
used the simplified notation, p � �p, ´� and √ � �q,v�.

For fluctuations in which v � q3, a version of Migdal
theorem holds in the so-called q limit, v ! 0, q ! 0 with
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v�yq � 0 so that the Ward identity requires [13]

L̄�s��L�s�
0 � �z�m��m� �a 1 x0�x��21 � 1 , (4)

i.e., z�m��m� � a21 � 1 when x0�x ø 1. By general
considerations, m�m� � z�1 1 ≠S�≠ep�. So ≠S�≠ep is
not singular while z21 � 1 1 ≠S�≠´ � jln�j´j, T �j. An-
other consequence of Eq. (4) is that the imaginary part of
the one-interaction irreducible part of x�√� is given by

Imx̄�√� �
p

2

X
k

� f�´k0� 2 f�´k��d�v 2 ´k0 1 ´k�z2,

(5)

where k0 � k 1 q, ´k is the energy of the quasiparticles.
The interaction vertex between the host electrons and the

pseudofermion field has the form G � G�0� 1 G�s�s ? S.
To the leading order in J, the vertex is renormalized as

G�s��p,v1; p 1 √,v2� �
J

2N
L�s��p,√�

L
�s�
0

, (6)

where v1 2 v2 � v. Using Eqs. (3) and (4), G�s� is pro-
portional to x�√� in the q limit. In the three-dimensional
system with a spherical Fermi surface, it is useful to con-
sider partial-wave components of G�s�:
G�s��p, ´,v1; p 1 q,´ 1 v,v2� �
J

2N

ak
2
0

k2 1 q2 2 iv�Γq
(7)

�
X̀
l�0

2l 1 1
2

G
�s�
l �´,v1;´ 1 v,v2�Pl �cosu� , (8)
where q2 � �p 2 p0�2 � p2 1 p02 2 2pp0 cosu, Pl are
Legendre functions of the first kind. The real part of
G

�s�
l �v� � G

�s�
l �´,v1; ´ 1 v,v2� has a singular contri-

bution, while the imaginary part of G
�s�
l �v� vanishes when

v ! 0. By use of three roots, x1, x2, and x3, of a cubic
equation, x3 2 2x2 1 x 2 �v�Γk3�2 � 0, we obtain

ReG
�s�
l �v� �

J
2N

ak
2
0

pp0

∑
x1�1 2 x1�

�x3 2 x1� �x1 2 x2�
Ql�z1�

1 2 cyclic permutations

∏
, (9)

where zi � �p2 1 p02 1 k2xi��2pp0 for i � 1, 2, 3 and
Ql are Legendre functions of the second kind. Noting that
Ql�z � have branch points at z � 61, we can evaluate the
singular contribution in G

�s�
l as

G
�s�
l �v� �

Ja
6N

k
2
0

p2
F

ln
Dl

max�jvj, Γk3, Γjp 2 p0j3�
,

(10)

where Dl � Γ�2pF exp�2
Pl

n�1 n21��3 serves as an
upper cutoff of jvj, Γk3, or Γjp 2 p0j3 for each l.
For the Kondo problem we will investigate below, the
on-shell scattering ´p0 � ´p 1 v is important so that
jvj . Γjp 2 p 0j3. Hence, we put p � p0 � pF.

If jvj is regarded as �T , Eq. (10) leads us to the follow-
ing facts: In the regime II, the v dependence of G

�s�
l is

negligible and the number of effective angular momentum
channels increases as lmax � 2pFj because the effective
size of the impurity scales up as j [12]; in the regime I, the
v dependence of G

�s�
l is singular as G

�s�
l ~ ln�Dl�jvj� be-

cause the effective exchange interaction acts over the long
range not only in space but also in time.

In order to demonstrate carefully how the singular v

dependence is combined with perturbative renormaliza-
tion group (RG) equations for the Kondo problem near the
QCP, first we consider the renormalization factor of the
pseudofermion propagator Z�v�. The leading order cor-
rection, dZ�v�, with respect to J is given by

dZ�v� � 2
J2

N2 S�S 1 1�
X
q

Z 0

2`

dv0

p

Imx�q,v0�
�v 1 v0�2 .

(11)

Noting that the imaginary part of x is given exactly by

Imx�√� �

Ç
L�s��p,√�
L̄�s��p,√�

Ç2
Imx̄�√� , (12)

and using Eqs. (4)–(6), Eq. (11) can be evaluated as

�S�S 1 1�
X̀
l�0

2l 1 1
2

Z D

0
d´

jzG
�s�
l �´�j2

v 2 ´

m�2

m2
�2,

(13)

where � � NmpF�2p2.
From Eq. (13), the variation of Z�v1� on reducing

the bandwidth cutoff from D to D 2 dD is obtained
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immediately. For G
�s�
l �´p ,v1; ´p0 ,v2�, the O�J2� term is

2
z

2
m�

m
�

∑
G

�s�
l �D 2 ´p�G�s�

l �´p 0 2 D�
dD

v1 2 D 1 ´p
1 G

�s�
l �2D 2 ´p�G�s�

l �´p 0 1 D�
dD

v1 2 D 2 ´p 0

∏
. (14)
The O�J3� term of G
�s�
l can be evaluated in a similar way

to dZ�v�. In Eqs. (13) and (14), z and m� should be un-
derstood as functions of the energy scale D, respectively.
The high-energy spectrum around the band edge of the host
electrons may be approximated to be that of the free elec-
trons so that z � 1 and m� � m at an early stage of the
RG procedure. Even at low energy, where z vanishes on a
logarithmic scale, the product z�m��m� remains of the or-
der of 1 by virtue of Eq. (4). Therefore the renormalization
of the wave function and of the mass of the host electron
does not affect the resulting scaling equation. Neglecting
´p�D, ´p 0�D, and v1�D compared to 1 while keeping the
explicit dependence on v � ´p 0 2 ´p , we obtain the two-
loop scaling equation for the invariant coupling ll�v� as

dll�v�
d lnD

� 2jll�D�j2 1 ll�v�
X̀
l0�0

2l 0 1 1
2

jll 0�D�j2.

(15)

Using Eq. (10), the initial bandwidth cutoff in Eq. (15)
can be put as D0 � Γ�2pF�3; the bare coupling constant,
i.e., the value of ll�v� at D � D0, is given by l

�b�
l �v� �

���a�G�s�
l �v� and the scaling stops at D � T .

The solution of Eq. (15) has the form ll�v� �
l

�b�
l �v�A 1 �J��N�Bl , where A and Bl are functions

of D which are independent of v. Correspondingly, the
form of the effective time-dependent interaction in the
momentum space divided by J��N , which is given by

Ad0e2Vu jt2t 0j sin
u

2
1

lmaxX
l�0

�2l 1 1�Bl
d�t 2 t0�

D

3 Pl�cosu� , (16)

is invariant under the present RG transformation with scal-
ing time as t � 1�D, where d0 � k

2
0�4p2

F and Vu �
D sin�u�2� �sin2�u�2� 1 d� with d � k2�4p2

F. The RG
flow of A and Bl describes correlation not only between
angular momentum channels but also between long-time
and instantaneous components of the effective interaction.

If we consider the scaling equation at the one-loop level
where the third-order term of Eq. (15) is neglected, we
can make a rough estimation of the Kondo temperature TK,
which is associated with the breakdown of the perturbation
theory, near the QCP. By use of Eq. (10) for l

�b�
l �v�, the

one-loop scaling equation can be solved analytically. The
result depends on whether Γk3�T � is smaller than T or not
in accordance with the region I or II as

ll�0� �

8><
>:

J̃ ln�T�Γk3� 1
p

J̃ tan�
p

J̃ ln�Dl�T�� Ip
J̃ tan�

p
J̃ ln�Dl�Γk3��

1 2
p

J̃ tan�
p

J̃ ln�Dl�Γk3�� ln�Γk3�T �
II ,

where J̃ � �J��6N� �k2
0 �p2

F�. Since l0�0� $ ll�0� for
arbitrary l, we evaluate TK as the temperature at which
226403-3
l0�0� diverges. Noting Γk3 � D0r3�2 in the region II, we
obtain

TK

D0
�

(
exp�2p�2

p
J̃ � r , r�

r3�2 exp�21�
p

J̃ tan�
p

J̃ j ln r3�2j�� r . r� ,
where r� � exp�2p�3

p
J̃ �. As a direct consequence of

the coupling between the quantum fluctuation of an indi-
vidual magnetic impurity and dynamical spin fluctuations
of host electrons, TK is seen to be enhanced in the region
around a ferromagnetic QCP.

On the basis of the two-loop expansion, the quasipar-
ticle’s damping rate t

21
imp�r, T� � z ImSimp�r, T � and the

electrical resistivity rimp�r,T� due to magnetic impurities
can be expressed in terms of ll�v� as follows:

t21
imp �

p2

4
S�S 1 1�

X̀
l�0

�l 1 1�2�l2
l �0� 2 l2

l11�0�� ,

(17)

rimp �
p2

4
S�S 1 1�

X̀
l�0

�l 1 1� �ll�0� 2 ll11�0��2.

(18)

By solving Eq. (15) numerically by use of Eq. (9) for
l

�b�
l �v�, T dependences of t21

imp and rimp are obtained in
Fig. 2, for J̃ � 0.02 in the weak coupling regime and for
several values of r. We also show the result of the Born
approximation where t

21
imp ~ j2�T� and rimp ~ lnj�T �,

which visualizes the crossover line from the regime I to
the regime II. The fixed point is that of the single-channel
Kondo problem; the multichannel effects can be seen as
a transient phenomenon. Note that TK, at which rimp is
of the order of 1, increases rapidly in the region II from
r � 0.1 to �0.01 while showing a tendency to be satu-
rated in the region I, consistently with the one-loop result.

In the regime II far away from the QCP, the v de-
pendence of the vertex G

�s�
l is suppressed, so that the

low-energy effective Hamiltonian may be mapped into the
anisotropic n 	 �lmax 1 1�2-channel Kondo model with
the bandwidth cutoff D 	 D0r3�2, in which the coupling
constant ll is given by l

�b�
l �0�. By general considerations

of the anisotropic multichannel Kondo model, while one
enters the influence of the multichannel fixed point for
T below O�TK�, channel anisotropy introduces another
energy scale Tx below which the stable single-channel
fixed point is reached [14]. Hence, the crossover from
the multichannel to the single-channel behavior is pre-
dicted when Tx�TK ø 1. For the n-channel case,
TK � Dl̄n�2 exp�21�l̄� and Tx asymptotically scales as
�Dl�11n�2, where l̄ and Dl are the average and differ-
ence of coupling constants, respectively [14]. For the
two-channel case, a recent numerical RG study has shown
that Tx � D�Dl�l̄�2 exp�21�l̄� [15]. From these results,
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FIG. 2. T dependences of t21
imp and rimp for J̃ � 0.02, at dif-

ferent r’s (r � 1024, 1023, 1022, and 1021 going down, starting
from the top curves at high T ), on the basis of the two-loop ex-
pansion (solid lines) and the Born approximation (dotted lines).

we expect that Tx is given by D�Dl�l̄�11n�2 exp�21�l̄�,
so that Tx�TK can be evaluated as �Dl�11n�2�l̄11n.
For the present effective Hamiltonian, from Eq. (10),
ll � 3J̃jln

p
rj while ll 2 ll11 � 3J̃��l 1 1�. Since

lmax 	 r21�2, we may make a rough estimation of
Tx�TK as

Tx

TK
� �3J̃�2n�2jln

p
r j2n21 	 �

p
3J̃ jln

p
r j�21�r . (19)

At r � 0.1 this is O�1023� and at r � 0.05 of O�1028�
for J̃ � 1. Therefore there is a possibility of Tx ø TK

in the intermediate coupling regime. Then for the region
of interest away from the QCP in the region II, at experi-
mentally attainable temperatures the observable properties
are expected to be those for a line of critical points with
singular properties with exponents continuously changing
as r changes.

The true fixed point at r $ 0 would be the fixed point
of the single-channel Kondo problem. It has zero ground
state entropy. For finite r and T ¿ Tx in the intermedi-
ate coupling regime, we may read off the results for the
entropy and its leading temperature dependence from the
exact solution for the multichannel problem [16].
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On the experimental side, systematic results for the re-
sistivity as a function of r are not available. Further work
is required to test the predictions made above.
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