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Strongly coupled Coulomb systems are characterized by localization (“caging”) of particles trapped
and oscillating in slowly fluctuating local potential wells. This observation constitutes the basic as-
sumption underlying the quasilocalized charge approximation. Using molecular dynamics simulation we
study the changes in the particles’ surroundings (cages) in a classical three-dimensional one-component
plasma. The results of our analysis show that at high coupling values, substantial changes occur only
after several plasma oscillation cycles. We also analyze the oscillation frequencies of the caged particles
and relate the decorrelation of the cages to the process of self-diffusion.
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Strongly coupled Coulomb systems comprise a large
class of physical systems which are of importance both
from a fundamental point of view and from the point of
view of applicability [1]. They appear in settings as dis-
tinct as laser and particle beam compressed fusion plas-
mas and astrophysical plasmas (giant planetary interiors,
white dwarfs, and pulsar crusts). They arise in condensed
matter systems: liquid metals, electrolytes, charged poly-
mers, semiconductor quantum wells, and quantum dots.
They also occur in many realizations of mesoscopic mat-
ter: complex (dusty) plasmas, charged colloids, and ion
cluster plasmas.

Centrally important for the study of such systems is the
model of the classical three-dimensional one-component
plasma (OCP), consisting of a single species of particles
immersed in a neutralizing background. The OCP can
be characterized by the ratio of the interparticle poten-
tial energy to the kinetic energy of the particles, expressed
through the coupling parameter G � q2��akBT�, where
a � �4np�3�21�3 is the Wigner-Seitz radius, n is the den-
sity of particles, q is the charge of the particles, and T is
the temperature [2,3].

A basic feature of strongly coupled plasmas in their liq-
uid phase is the localization of charges [4–7]: there is in-
dication that the particles spend substantial periods of time
in local minima of the rough potential surface developing
in such systems. At the same time, the time of localization
is limited by the reformation of the potential surface due
to the migration of the very particles that generate it. An
approximation scheme based on the observation of local-
ization is the quasilocalized charge approximation (QLCA)
that has proven to be a very useful tool in theoretical stud-
ies of the properties of strongly coupled Coulomb systems
[8–10]. In order for the QLCA to be valid one needs to
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assume that the period of time spent by the charges in
the local potential minima extends over several oscillation
cycles.

The objective of the present study is to investigate this
fundamental feature of particle caging of the strongly
coupled OCP in the liquid phase. This is done by analyzing
the changes of the surroundings of individual particles
using the correlation techniques developed by Rabani
et al. [11,12]. The trajectories of particles are followed
by molecular dynamics (MD) simulation, based on the
particle-particle particle-mesh (PPPM) method [13,14],
using periodic boundary conditions. The cubic simulation
box has an edge length of L � 1026 m and the number
of particles is set to N � 1024. The present calculations
cover the 2.5 # G # 160 range. At the start of the simu-
lations, random initial particle configurations are set.
The initial velocities of the particles are sampled from a
Maxwellian distribution with a temperature correspond-
ing to the prescribed value of G. The system is then
thermostated for several thousand time steps, and the
particle trajectories are traced in the next several thousand
(2000–20 000) time steps following the thermalization
period. The stability of the system is monitored by
recording the system temperature (calculated from the
kinetic energy of particles).

During the data collection phase information about the
surrounding of each particle is stored. As discussed in [11],
different definitions can be used to find the set of neighbors
that make up the immediate surroundings of the particles.
Here we make use of two definitions labeled (D1) and
(D2): In (D1), we take the particles situated within the
first coordination shell at any moment [as identified by
the first minimum of the pair correlation function g�r�],
whereas in (D2) we take the closest 14 particles at any
© 2002 The American Physical Society 225001-1
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moment [resembling the underlying bcc (body centered
cubic) structure of the 3D OCP, with the first and second
closest neighbors of the lattice not being resolved in g�r�
in the fluid phase]. In the PP part of the simulation this is
done by the efficient “chaining mesh” technique [14].

Rabani et al. [11,12] have defined a generalized neigh-
bor list �i for particle i, �i � � f�ri,1�, f�ri,2�, . . . , f�ri,N ��.
Using definition (D1), f is the Heaviside function (Q); i.e.,
f � 1 if ri,j # rc, and f � 0 otherwise [11,12]. Here
rc is the cutoff radius, and the neighbors are said to be
closely separated (and particle j is said to belong to the
surrounding, or “cage” of particle i) if ri,j # rc. At high
G values the first minimum of g�r� occurs at r�a � 2.42.
This value is chosen for the cutoff radius in the simulations
covering the whole range of G. Using definition (D2) of
the set of closest neighbors, the neighbor list �i always has
a fixed number (14) of elements of 1, while its other ele-
ments are zero. It is noted that in the simulations using
(D1) the number of closest neighbors fluctuates around 14
with a standard deviation between 1 and 2.

The similarity between the surroundings of the particles
at t � 0 and t is measured by the “list correlation” func-
tion, derived from the scalar product of the neighbor list
vectors:

C��t� �
��i�t��i �0��

��i�0�2�
, (1)

where �?� denotes averaging over particles and initial times.
The number of particles that have left the original cage of
particle i at time t can be determined as

nout
i �t� � j�i�0�2j 2 �i�0��i�t� , (2)

where the first term gives the number of particles around
particle i at t � 0, while the second term gives the number
of “original” particles that remained in the surrounding
after time t elapsed. The cage correlation function Ccage
can be calculated for a different number of particles leaving
the cage c, as an ensemble and time average of the function
Q�c 2 nout

i �, i.e.,

Cc
cage�t� � �Q�c 2 nout

i �0, t�	� . (3)

Previous molecular dynamics studies have shown that
the collective dynamics of the OCP is governed by the
longitudinal plasma oscillation in the vicinity of the
plasma frequency (vp� and by the low frequency shear
mode [15,16]. The oscillation of individual particles also
shows up in their phase space trajectories. The analysis
of these trajectories in the px 2 x phase plane reveals a
dramatic qualitative difference between the quasilocalized
high-G and the relatively low-G situations, as illustrated
in Figs. 1(a) and 1(b). In the first case characteristic loops
appear indicating the quasilocalized oscillations. The time
required for a particle to proceed along one loop scatters
mostly between the inverse of the Einstein frequency
vE � vp�

p
3 and the inverse of the plasma frequency

vp. While this is indeed expected on the basis of the
predicted collective mode spectrum [8,9] of the 3D OCP
in this coupling domain, the frequency histograms [shown
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FIG. 1. px 2 x phase plane trajectories of a single particle
at (a) G � 160 and (b) G � 2.5.

in Figs. 2(a) and 2(b)] reveal additional information about
the physics of the strongly coupled phase. To highlight the
effect of the dynamical interaction between the particles
on the frequency spectrum we have also analyzed the
frequency distribution of a single caged particle in the
frozen environment of the others. At high values of G

[e.g., G � 160; see Fig. 2(c)] we obtain a sharp peak at
the Einstein frequency; at lower values of G [see Fig. 2(d)
for G � 40] the frequency distribution becomes wider.
This may be due to the fact that, with decreasing G, there
is increasing randomness and, consequently, increasing
deviation from spherical symmetry in the environment
sampled by the oscillating charge.

The cage correlation functions of the 3D OCP, calculated
for different values of the number of particles (c) leav-
ing the cage [see Eq. (3)] are plotted in Fig. 3(a) for G �
160, as a function of time. Figure 3(b) shows the cage
correlation functions obtained using c � 7, for several val-
ues of G. The data show that using definition (D2), a some-
what slower decay is obtained. We define the cages to be
decorrelated when half of the particles’ original neighbors
leave their surroundings with 90% probability. The num-
ber of oscillation cycles Tdecorr needed to reach this state is
plotted in Fig. 3(c) as a function of G, for both definitions
of the set of nearest neighbors. The data can be well ap-
proximated by the functional form: Tdecorr � A exp�GB�,
with approximate values A � 0.13 and B � 0.35. We can
conclude that the cages of particles become decorrelated
during 
45 oscillation cycles at G � 160, while at G � 7
the cages decorrelate during one cycle. Near the phase
225001-2
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FIG. 2. Histogram spectra of closed trajectory segments of
single caged particles at (a) G � 160 and (b) G � 40. (c) and
(d) Same as (a) and (b), but measured in the frozen environment
of the other particles.

transition point at G 
 172 the localization of particles
tends to be complete, and thus we can expect Tdecorr ! `.
Because of the extremely long relaxation time near this
point, it is not feasible to approach this domain from the
liquid side. We have, however, verified that once the sys-
tem is set up in the crystalline state, e.g., at G � 200,
Tdecorr is indeed unmeasurably long.

Cage correlation functions can also be calculated for in-
dividual particles. Representative examples of such Ccage
functions are shown in Fig. 4(a) for G � 160. The graphs
(corresponding to different values of c� usually exhibit os-
cillations, i.e., some of the particles leaving the cage return
later for some time. (These oscillations are less frequent in
the case of lower G values.) We define T1 as the number
of oscillation cycles for the cage correlation with c � 7 to
decay to zero (and not to return to unity again). Figure 4(b)
shows a histogram of T1 obtained from monitoring numer-
ous individual decorrelation events. The f�T1� histogram
has a quite broad distribution, the number of decorrelation
cycles for G � 160 lies mostly between 
8 and 80. The
shape and the width of the histograms obtained at the lower
G values are similar.

The escape of individual particles from the cages can be
related to the process of diffusion. As the cage correlation
function Cc

cage�t� gives the probability of the escape
of less than c particles from the cage, the probability of
the escape of exactly one particle can be given by P1�t� �
Cc�2

cage�t� 2 Cc�1
cage�t�. Plotting P1 as a function of time, we

find an exponential decay (except at early times). The char-
acteristic decay time t0 relates to the probability that any
225001-3
FIG. 3. (a) Cage correlation functions calculated for a differ-
ent number of particles c leaving the cage at G � 160. (b) Cage
correlation function for c � 7 at different values of G. The
curves with solid lines have been obtained following definition
(D1) to find the closest set of neighbors, while the dots have
been obtained taking definition (D2). (c) Number of oscillation
cycles during which the particle cages decorrelate.

of the 14 particles (making up the cage) leaves: a diffusion
coefficient for a particle Dc can be calculated as Dc �
�Dx�2�14t0, where Dx is the displacement of the particles
associated with the escape from the cage. We have
compared the Dc data choosing Dx�a � 0.4, with the in-
dependently obtained self-diffusion coefficient (calculated
directly from the mean square displacement of the par-
ticles [17]): we find a good agreement in the high-G
domain showing that escape from the cage governs the
self-diffusion process in this domain. In addition, the data
also agree very well with the MD Yukawa calculations
225001-3
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FIG. 4. (a) Examples of cage correlation functions for an in-
dividual particle, for a different number of particles leaving the
cage c at G � 160. (b) Histogram of T1 (number of oscillation
cycles after which the c � 7 cage correlation function is zero)
obtained from decorrelation events of individual cages.

of Ohta and Hamaguchi [18] in the low k limit. All
these data reasonably emulate— although apparently with
a somewhat more involved dependence on G— the D�

values given by the simple formula D� � 2.95G21.34

of Hansen et al. [15]. These comparisons are shown in
Fig. 5.

In conclusion, in this Letter we have been able to quan-
tify the so far rather nebulous notion of localization in a
strongly coupled OCP by analyzing through MD simu-
lation the dependence of the particle dynamics on the cou-
pling parameter G. The simulation results support the
physical basis of the QLCA. They show that at high val-
ues of G the particle dynamics changes qualitatively: the
particles are caged by their nearest neighbors and spend
several oscillation cycles in local minima of the rough
potential surface without experiencing substantial changes
in their surroundings. The caging time is a fast growing
function of G. The caged particles exhibit a characteristic
oscillation spectrum. Escape from the cage seems to be
the dominating process for self-diffusion in this coupling
domain. The results have been found to be relatively in-
sensitive to the method of selection for the set of closest
neighbors.
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FIG. 5. Comparison of reduced self-diffusion coefficients of
the OCP obtained from the decay of cage correlations, as well
as from different MD simulations.
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