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Finite Thermal Conductivity in 1D Models Having Zero Lyapunov Exponents
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Heat conduction in three types of 1D channels is studied. The channels consist of two parallel walls,
right triangles as scattering obstacles, and noninteracting particles. The triangles are placed along the
walls in three different ways: (i) periodic, (ii) disordered in height, and (iii) disordered in position. The
Lyapunov exponents in all three models are zero because of the flatness of triangle sides. It is found
numerically that the temperature gradient can be formed in all three channels, but the Fourier heat law is
observed only in two disordered ones. The results show that there might be no direct connection between
chaos (in the sense of positive Lyapunov exponent) and normal thermal conduction.
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Recent years have witnessed increasing attention on
the establishment of a connection between macroscopic
phenomena such as transport coefficient and microscopic
chaos [1–3]. Because a direct mathematical derivation has
been proved to be very difficult, and in only a very simple
model can such an approach be established [4], we have to
rely on massive numerical simulations. There have been
a large number of numerical works on heat conduction in
1D systems [5–19] aimed at understanding the necessary
and sufficient conditions for a Hamiltonian system to obey
the Fourier heat conduction law. It is found that an on-site
potential is sufficient for a 1D lattice model to have a finite
thermal conductivity [7].

Albeit much progress has been achieved, open questions
remain (see recent review [20]). For example, in connect-
ing the normal heat conduction with the underlying dy-
namics, some contradictions exist. On the one hand, some
models such as the ding-a-ling model [5] and the Lorentz
gas model (with periodic and/or disordered disks) show-
ing exponential instability, thus a positive Lyapunov expo-
nent, have a normal heat conduction [4,5,13]. On the other
hand, the Fermi-Pasta-Ulam (FPU) model has a divergent
thermal conductivity [6] even though it has positive Lya-
punov exponents. Therefore, the role that chaos plays (in
the sense of positive Lyapunov exponent) in normal heat
conduction is still an unsolved problem and deserves fur-
ther investigation.

In this Letter, we study this problem in a series of 1D
models having zero Lyapunov exponents. Our models
are variants of the Ehrenfest model [21] and thus called
“Ehrenfest gas channels.” The channel consists of two par-
allel walls, a series of isosceles right triangles with hypote-
nuse along the parallel walls, and noninteracting particles.
The two ends of the channel are put in contact with heat
baths. By placing the triangles in different ways, we ob-
tain different types of channels.

The Ehrenfest model differs from the Lorentz gas model
in underlying dynamics. The collisions of the particles
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with the circles in the Lorentz gas lead to exponential sepa-
ration of nearby trajectories, thus a positive Lyanpunov ex-
ponent, whereas collisions with the squares in the Ehren-
fest model lead to linear separation of nearby trajectories,
thus a zero Lyapunov exponent.

Channel with periodic structure.—In this channel, the
right triangles are placed periodically; namely, in each cell,
we have two triangles, one on the bottom wall, the other
on the top. The triangles are placed at the position of x �
1, 3, . . . (arbitrary unit). The model geometry is shown
in Fig. 1(a). The channel of length N is N th repetition
of the cell. Two heat baths with temperatures T1 and
T2 are attached to the left and right ends of the channel,
respectively. The heat bath has simple velocity distribution
PT �y� � d�y 2

p
2T �. It can be proved that the form of

heat baths does not affect the transport behavior in our
systems.

To compute temperature field at a stationary state, we
calculate time averages by dividing the configuration space
into a set of boxes Ci [13]. The time spent within a box
in the jth visit is denoted by tj and the total number of
crossings of a box Cj during the simulation is M. The
temperature field is defined by [13]

TCi � �E�Ci �

PM
j tjEj�Ci�
PM

j tj
. (1)

Then it is projected on x direction (the transport direction).
The heat flux is calculated by the change of energy carried
through to the left and right ends by the particles,

J �
1
tM

MX

j�1

DEj , (2)

where DEj � �Ein 2 Eout�j is the energy change at the
jth collision with a heat bath, tM is the total time spent for
M such collisions.

In numerical simulation, we compute the flux for a
single particle J1. The scaled heat flux is JN �N� � NJ1�N�
© 2002 The American Physical Society 223901-1
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FIG. 1. Periodic channel: (a) Geometry. (b) Temperature pro-
file. (c) Heat flux J1�N� versus N . (d) ��x�t� 2 x�0��2� versus
t. In (c) and (d) the bullets are the numerical data and the solid
lines are the best fit ones. The width of the channel is 1.1 (ar-
bitrary unit) and the height of right triangle is 0.6.

[13], where N is the number of the cells. Each cell has
length a, thus the channel has length L � Na.

In spite of the jumps at both ends, the temperature gra-
dient is well established and scales as dT�dx ~ N21 as
shown in Fig. 1(b). The heat flux J1�N� is found to be

J1�N� � ANa , (3)

with a � 21.186 6 0.002. The thermal conductivity
k � 2

JN �N�
dT�dx ~ NJN � N0.81, which is divergent as one

goes to the thermodynamic limit (N ! `).
To understand this divergent behavior, we study the

transport property of the particles in the channel quantified
by the mean square displacement ��x�t� 2 x�0��2�. An
ensemble of particles (105) with the same amplitude of ve-
locity �� 1� are injected into the channel in random direc-
tions. The best fit for the asymptotic behavior gives rise to

��x�t� 2 x�0��2� � Dtb , (4)

with b � 1.672 6 0.003 [Fig. 1(d)]. This means that the
transport along the x direction is neither a ballistic one
(b � 2) nor a diffusive one (b � 1). This super diffusion
is responsible for the divergent thermal conductivity. It
may also be the reason for the jumps near the channel
ends in the temperature profiles. Such jumps have been
observed in the FPU model [6,7] and attributed to the
223901-2
soliton-like excitations [8,9]. A quantitative analysis has
been done by Aoki and Kusnezov [17] more recently.

When our model is compared with the Lorentz gas chan-
nel [13], it is intuitive to attribute the divergent thermal
conductivity to the zero Lyapunov exponent. To clarify
this point, we modify the channel slightly in two ways: (a)
by making the height of triangles random; (b) by putting
the triangles in a random position along the transport di-
rection. The Lyapunov exponent in both variants remains
zero because of the flatness of the triangle sides.

Channel with right triangles of random heights.—The
height of the triangle is given by

hi � h0 1 d � Ri , i � 1, 2, · · · , 2N , (5)

where 	Ri
 are random numbers uniformly distributed in
the interval �21, 1�, d is the magnitude of disorder, and
hi , H, where H is the width of the channel. Figure 2(a)
shows the geometry of the channel. In this Letter, we take
H � 1.1, h0 � 0.6, and d [ �0, 0.4�.

In our calculations, the temperature and heat flux are av-
eraged over 100 disorder realizations and compared with
that one from averaged over 1000 realizations, the differ-
ence is found to be indistinguishable.

Figure 2(b) shows the temperature profile for d � 0.4.
It is a straight line with gradient dT�dx � 20.05�N . The

FIG. 2. Height disordered channel: (a) Channel geometry. (b)
Temperature profile. (c) Heat flux J1�N� versus N . (d) a versus
d. (e) b versus d. d � 0.4 in (b) and (c). The solid lines in (d)
and (e) are drawn to guide the eyes.
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heat flux J1�N� is shown in Fig. 2(c). The best fit gives
rise to a slope a � 21.992 6 0.018. Therefore JN �N� �
N21. The thermal conductivity k � 2JN �N���dT�dx� is
an N independent constant, the Fourier law is thus justi-
fied. To see how the heat conduction changes with dis-
order, we calculate the exponent a for different values of
d by fixing the channel length. The results are shown in
Fig. 2(d). The bullets represent the a values obtained from
the best fit with Eq. (3) by using N [ �16, 512�. It shows
that, for a disordered channel of finite length, the heat con-
duction obeys Fourier law when the disorder amplitude is
large enough. In principle, in the thermodynamic limit,
any infinitesimal disorder will cause a diffusive transport,
thus a normal thermal conduction. This is demonstrated by
the case with d � 0.0125, a � 21.724 6 0.012 from the
data N [ �16, 512� which is far from the normal thermal
conduction; however, a � 21.999 6 0.011 from N [
�1024, 32768� [the star in Fig. 2(d)] showing a normal ther-
mal conductivity. This is similar to the mass disordered
lattice model [16].

We compute ��x�t� 2 x�0��2� and find that for all values
of disorder, it can be best fitted by Dtb asymptotically. b

as a function of the disorder d is plotted in Fig. 2(e). It is
seen that for any finite value of d, the slope b is very close
to unity, which means that the particles moves diffusively
in the channel, thus the heat conduction in this channel
obeys Fourier law.

Thermal conductivity k versus temperature T0 � �T1 1

T2��2 is plotted in Fig. 3(a). It is found that k � T
g
0 ,

and the best fit gives rise to g � 0.501 6 0.002. The
normalized temperature profile T��x� � T �x��T0 is shown
in Fig. 3(b), which indicates that dT�dx � 20.02T0�L.

Channel with triangles at random positions.—The posi-
tion of the triangle is made random, namely, xi � d � Ri ,
where xi is the position away from the periodic structure

FIG. 3. Height disordered channel: (a) Thermal conductivity
k versus temperature T0 � �T1 1 T2��2. (b) The normalized
temperature profile (T� � T�T0) for six different temperature
scales. T0 � 0.01, 0.1, 1, 10, 100, and 1000, respectively.
Disorder d � 0.4.
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shown in Fig. 1(a). Figure 4(a) is the schematic illustra-
tion of the geometry. The numerical simulations show that
the temperature gradient is well established and is similar
to Fig. 2(b). The heat flux J1�N� is described by Eq. (3).
We plot the exponent a versus d in Fig. 4(b). It tells us
the trend to normal thermal conductivity (a � 22) in a
long length limit (star) and a large disorder limit (bullets).

As an independent check, we also calculate the integral
of the current-current correlation function in the Green-
Kubo formula. The integral is found to be convergent in
cases with disorder but divergent in the case with periodic
geometry shown in Fig. 1(a).

Theoretical analysis: Suppose the path length distribu-
tion of particles from left to right (or vice versa) is fL�l�
in a channel of length L, namely, there are dn particles
whose path length lies in the interval �l, l 1 dl�. dn�n �
fL�l�dl. fL�l� is determined merely by the structure and
the length of the channel. Two heat baths of temperature
TL and TR are put to the left and right ends, respectively. In
a time period of t there are n particles exchanged between
two heat baths. The total time spent to reach the right heat
bath from the left one is tLR � n�l�

R`

0
1
y PT1�y�dy , where

�l� �
R`

0 lfL�l� dl is the average path length from the left
heat bath to the right one, and PT �y� the velocity distri-
bution function of heat bath at temperature T . Similarly,
the total time of n particles from the right bath to the left
one is tRL � n�l�

R`
0

1
y PT2 �y� dy. The total time is t �

tLR 1 tRL. The energy exchange between two heat baths
is E � n

R`
0

y2

2 �PT1
�y� 2 PT2

�y�� dy � n�T1 2 T2�, the
heat flux for the channel of length L per particle is thus
given by

J1�L� �
E
t

�
T1 2 T2

�l�
R`

0
1
y �PT1 �y� 1 PT2�y�� dy

. (6)

FIG. 4. Position disordered channel: (a) Geometry. (b) a ver-
sus d. 	xi
 � d � Ri , d is disorder. The solid line in (b) is drawn
to guide the eyes. In (b) the bullets are the data from best fit by
using N [ �32, 1024�, while “*” at d � 0.1 is the one by using
N [ �8192, 32768�.
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From Eq. (6), it can be seen that whether the heat con-
duction obeys the Fourier law or not does not depend on
the types of heat bath, it depends only on �l�— the trans-
port property. For instance, if the system is diffusive, then
�l� ~ L2 and the heat flux J1�L� ~ L22. This is what we
see in numerical calculations [Fig. 2(c)]. Moreover, for a
given geometry, i.e., �l� is determined, the heat flux and
heat conductivity are determined by the property of the heat
baths. If we change the temperature of heat baths q times,
then for the simple heat bath we used and the Gaussian heat
bath, it can be shown that the heat flux changes q3�2 times.
Because the temperature gradient dT�dx � const 3 T0

[see Fig. 3(b)], thus the thermal conductivity k changes
with temperature T1�2

0
, this agrees with our numerical find-

ing in Fig. 3(a).
In summary, we have studied heat conduction in three

different 1D Ehrenfest channels. The temperature gradi-
ent can be formed in all cases. However, a finite thermal
conductivity can be reached only when the disorder (either
in position or in height) exists. As the Lyapunov expo-
nents are zero in our model, we thus conclude that the
finite thermal conductivity might have nothing to do with
the underlying dynamics. Most recent study on heat con-
duction in channels with irrational triangles supports this
argument [22].
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