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Flavor oscillations of neutral B mesons have been studied in e1e2 annihilation data collected with
the BABAR detector at center-of-mass energies near the Y�4S� resonance. The data sample used for this
purpose consists of events in which one B0 meson is reconstructed in a hadronic decay mode, while the
flavor of the recoiling B0 is determined with a tagging algorithm that exploits the correlation between
the flavor of the heavy quark and the charges of its decay products. From the time development of
the observed mixed and unmixed final states, we determine the B0-B

0 oscillation frequency Dmd to be
0.516 6 0.016�stat� 6 0.010�syst� ps21.

DOI: 10.1103/PhysRevLett.88.221802 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd
In the standard model, B0-B 0 mixing [1] occurs through
second-order weak diagrams involving the exchange of
up-type quarks, with the top quark contributing the domi-
nant amplitude. A measurement of the mass difference
Dmd between the mass eigenstates is therefore sensitive
to the value of the Cabibbo-Kobayashi-Maskawa matrix
element Vtd [2,3]. Mixing in the neutral B meson sys-
tem was first seen almost fifteen years ago [4], and Dmd
2-3
has been measured with both time-integrated and time-
dependent techniques [5].

In this Letter, we present a measurement of time-
dependent mixing based on a sample of 32 3 106 BB pairs
recorded at the Y�4S� resonance with the BABAR detector
at the Stanford Linear Accelerator Center. This study and
a related CP asymmetry measurement [6] are described in
more detail in Ref. [7]. At the PEP-II asymmetric-energy
221802-3
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e1e2 collider, the Y�4S� provides a source of B0B 0

pairs moving along the e2 beam direction (z axis) with a
known Lorentz boost of bg � 0.55, which allows a new
technique for determining Dmd with a high purity sample
of fully reconstructed B0 mesons.

The B0-B 0 mixing probability, for a given B0 lifetime
t, is a function of Dmd and the proper decay-time differ-
ence Dt between the two neutral B mesons produced in a
coherent P-wave state in the Y�4S� event. The result is a
time-dependent probability to observe unmixed �1�, B0B

0,
or mixed �2�, B0B0 and B

0
B
0, events:

Prob�B0B 0!B0B
0,B0B0 or B

0
B
0� ~ e2jDtj�t

3 �16 cosDmdDt� .

(1)

The effect can be measured by reconstructing one B in a
flavor eigenstate, referred to as Brec, while the remaining
charged particles originating from the decay of the other
B, referred to as Btag, are used to identify, or “tag,” its fla-
vor as a B0 or B 0. The charges of identified leptons and
kaons are the primary indicators, although other informa-
tion in the event can also be used to identify the flavor
of Btag. The time difference Dt � trec 2 ttag � Dz�bgc
is determined from the separation Dz of the decay ver-
tices for the flavor-eigenstate and tagging B along the boost
direction.

The value of Dmd is extracted from a tagged fla-
vor-eigenstate B0 sample with a simultaneous unbinned
maximum likelihood fit to the Dt distributions of mixed
and unmixed events. There are two principal experimental
complications to the probability distribution [Eq. (1)].
First, the tagging algorithm, which classifies events into
categories i depending on the source of the available
tagging information, incorrectly identifies the flavor of
Btag with a probability wi with reduction of the observed
amplitude for the oscillation by a factor �1 2 2wi�.
Second, the resolution for Dt is comparable to the oscil-
lation period and must be well understood. The proba-
bility density functions for the unmixed and mixed signal
events, H6,sig, can be expressed as the convolution of the
underlying Dt distribution for the ith tagging category,

h6�Dt;Dmd ,wi� �
e2jDtj�t

4t
�16 �12 2wi� cosDmdDt� ,

with a Dt resolution function R containing parameters
âj. A log-likelihood function is then constructed by sum-
ming lnH6,sig over all events within each of the tagging
categories. The likelihood is maximized to extract si-
multaneously the mistag rates wi, the resolution function
parameters âj , and the mixing parameter Dmd .

The BABAR detector is described in detail elsewhere
[8]. Charged particles are detected and their momenta
measured by a combination of a 40-layer drift chamber
(DCH) and a five-layer silicon vertex tracker (SVT) em-
bedded in a 1.5-T solenoidal magnetic field. A detector
of internally reflected Cherenkov radiation (DIRC) is used
221802-4
for charged hadron identification. Kaons are identified
with a neural network based on the likelihood ratios in the
SVT and DCH, derived from dE�dx measurements, and
in the DIRC, calculated by comparing the observed and
expected pattern of Cherenkov light for either kaons or pi-
ons. A finely segmented CsI(Tl) electromagnetic calorime-
ter (EMC) is used to detect photons and neutral hadrons,
and to identify electrons. Electron candidates are required
to have a ratio of EMC energy to track momentum, an
EMC cluster shape, DCH dE�dx, and DIRC Cherenkov
angle consistent with expectation. The instrumented flux
return (IFR) contains resistive plate chambers for muon
and neutral hadron identification. Muon candidates are re-
quired to have IFR hits located along the extrapolated DCH
track, an IFR penetration length, and an energy deposit in
the EMC consistent with the muon hypothesis.

Neutral B mesons are reconstructed in a sample of
multihadron events in the flavor eigenstate decay modes
D���2p1, D���2r1, D���2a1

1 , and J�cK�0 . The de-
cay channels K1p2, K1p2p0, K1p1p2p2, and
K0Sp1p2 are used to reconstruct D

0 candidates, while
the modes K1p2p2 and K0Sp2 are used for D2 candi-
dates. Charged D�2 candidates are formed by combining
a D 0 with a soft p2. Finally, the B0 candidates are
formed by combining a D�2 or D2 candidate with a
p1,r1�r1 ! p1p0�, or a1

1 �a1
1 ! p1p2p1�; like-

wise, B0 ! J�cK�0 candidates are reconstructed from
combinations of J�c candidates, in the decay modes
e1e2 and m1m2, with a K�0 �K�0 ! K1p2�. The
selection and reconstruction of these decays is described
in detail in Ref. [9].

Neutral B candidates are identified by the difference DE
between the energy of the candidate and the beam energyp

s�2 in the center-of-mass frame, and the beam-energy
substituted mass mES, calculated from

p
s�2 and the re-

constructed momentum of the B candidate. Candidates are
selected by requiring mES . 5.2 GeV�c2 and DE within
62.5 standard deviations of 0 (typically jDEj , 40 MeV).
When multiple candidates in a given event are selected
(with probability of about 0.25%), only the one with the
smallest jDEj is retained.

After the daughter tracks of the Brec are removed, the
remaining tracks are analyzed to determine the flavor of
the Btag. Events are assigned a lepton tag if they con-
tain an identified lepton with a center-of-mass momentum
greater than 1.0 or 1.1 GeV�c for electrons and muons,
respectively, thereby selecting mostly primary leptons. If
the sum of charges of all identified kaons is nonzero, the
event is assigned a kaon tag. The final two tags involve
a multivariable analysis based on a neural network, which
is trained to identify primary leptons, kaons, and soft pi-
ons, and the momentum and charge of the track with the
maximum center-of-mass momentum. Depending on the
output of the neural net, events are assigned either an NT1
(more certain) tag, an NT2 (less certain) tag, or are not
tagged at all (about 30% of all events) and excluded from
the analysis.
221802-4
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Tagging assignments are made mutually exclusive by the
hierarchical use of the tags. Events with a lepton tag and
no conflicting kaon tag are assigned to the lepton category.
If no lepton tag exists, but the event has a kaon tag, it
is assigned to the kaon category. Otherwise, events with
neural network tags are assigned to corresponding neural
network categories.

The decay time difference Dt between B decays is de-
termined from the measured separation Dz � zrec 2 ztag
along the z axis between the reconstructed Brec�zrec� and
flavor-tagging decay Btag�ztag� vertex. This measured Dz
is converted into Dt with the use of the known Y�4S�
boost, including a correction on an event-by-event basis
for the direction of the B mesons with respect to the z
direction in the Y�4S� frame. The Dt resolution is domi-
nated by the z resolution of the tag vertex position. After
removal of the Brec daughters, the Btag vertex is formed
from all remaining tracks in the event except kaons, which
are mostly D meson decay products. An additional con-
straint is provided by the calculated Btag production point
and three momentum, determined from the momentum of
the Brec candidate, its decay vertex, the average position
of the interaction point, and the Y�4S� boost. Tracks with
a large contribution to the x2 are iteratively removed until
those remaining �$1� have a reasonable fit probability or
all tracks are removed. Only events with a reconstructed
Btag vertex, jDtj , 20 ps and sDt , 1.4 ps are retained
(about 84%), where sDt is the measurement error derived
from the vertex fits.

The distribution of mES for the selected candidates is
shown in Fig. 1, where the result of a fit with a Gaussian
distribution for the signal and an ARGUS function [10] for
the background is also displayed. The fitted number of sig-
nal events and their purity (for mES . 5.27 GeV�c2) are
6347 6 89 and �85.8 6 0.5�%, respectively. The sample
composition by tagging category is given in Table I.

In the likelihood fit, the Dt resolution function is ap-
proximated by a sum of three Gaussian distributions (core,
tail, and outlier) with different means and widths,
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FIG. 1. Distribution of mES for all B0 candidates with a flavor
tag and a reconstructed tag vertex.
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where dt � Dt 2 Dttrue. The sum of the fractions fk is
constrained to unity. For the core and tail Gaussians, the
widths sk � Sk 3 sDt are the event-by-event measure-
ment errors mulitplied by overall scale factors Sk. The
scale factor of the tail Gaussian is fixed to the Monte Carlo
value since it is strongly correlated with the other resolu-
tion function parameters. The third Gaussian, with a fixed
width of s3 � 8 ps, accounts for outlier events with in-
correctly reconstructed vertices (less than 1% of events).
A separate core bias coefficient b1,i is allowed for each
tagging category i to account for small shifts due to in-
clusion of charm decay products in the tag vertex, while
a common bias coefficient b2 is used for the tail compo-
nent. These offsets are proportional to sDt since both the
size of the bias and the resolution for ztag depend kine-
matically on the polar angle of the flight direction of the
charm daughter. The tail and outlier fractions and the scale
factors are assumed to be the same for all decay modes,
since the ztag measurement dominates the resolution for
Dt. This assumption is confirmed by Monte Carlo studies.
Separate resolution parameters are used for two different
data-reconstruction periods, referred to as Run1 and Run2,
which mainly differ in vertex performance and tracking
efficiency.

In the presence of backgrounds, which are dominated
by continuum e1e2 and BB combinatorial sources, addi-
tional terms are added to the signal PDF H6,sig for various
background types,

H6,i � fi,sigH6,sig 1
X

j�bkgd

fi,jB6,i,j�Dt; b̂6,i,j� ,

where the background PDFs B6,i,j provide an empirical
description for the possible Dt behavior of background
events in each tagging category i. The background Dt
types considered are a zero lifetime component and a
nonoscillatory component with an empirical nonzero life-
time. We fit for separate resolution function parameters for
signal and background to minimize correlations. The frac-
tion of background events for each tagging category and
background source is given by fi,j, while b̂6,i,j are pa-
rameters used to characterize each source of background

TABLE I. Signal yields per tagging category, obtained from
the mES distributions after all selection requirements. The purity
is quoted for mES . 5.27 GeV�c2.

Category Tagged Purity (%)

lepton 1097 6 34 96.0 6 0.7
kaon 3156 6 63 84.6 6 0.7
NT1 798 6 31 88.9 6 1.2
NT2 1293 6 43 79.4 6 1.3
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by tagging category for mixed and unmixed events. The
signal probability fi,sig is determined from the measured
event mES on the basis of a separate fit to the observed
mES distribution in tagging category i. The sum of signal
and background fractions is forced to unity.

Altogether, the likelihood fit involves a total of 44 pa-
rameters, including Dmd , the average mistag fraction and
the difference between B0 and B 0 for each tagging cate-
gory (8), parameters for the signal Dt resolution (16), and
parameters for background time dependence (5), Dt reso-
lution (6), and effective dilutions (8). The value of Dmd

was kept hidden throughout the analysis until all analysis
details and the systematic errors were finalized, to elimi-
nate possible experimenter’s bias.

The results from the likelihood fit to the tagged B0

sample are summarized in Table II. The probability to ob-
tain a likelihood smaller than that observed is 44%, evalua-
ted with a parametrized Monte Carlo technique. The value
of Dmd given by the fit, prior to final corrections, is
Dmd,fit � 0.525 6 0.016 ps21. One method for display-
ing the result of the full likelihood fit is to use the observed
mixing asymmetry,

Amix�Dt� �
Nunmixed�Dt� 2 Nmixed�Dt�
Nunmixed�Dt� 1 Nmixed�Dt�

.

The unit amplitude for the otherwise pure cosine depen-
dence of Amix is diluted by the mistag probability and the
experimental resolution for Dt. The observed Dt distri-
butions of both the mixed and unmixed events, and their
asymmetry Amix, are shown along with projections of the
likelihood fit result in Fig. 2.

Since the parameters of the Dt resolution for both sig-
nal and backgrounds are free parameters in the fit, their
contribution to the uncertainty on Dmd is included as part
of the statistical error. Remaining systematic errors arise
from the choice of the signal Dt resolution description, its
capability to handle outliers and various worst-case SVT
misalignment scenarios �60.005 ps21�, and by approxi-
mations and uncertainties in the Dz to Dt conversion from
the absolute z scale of the detector and PEP-II boost (less
than 60.002 ps21). Systematic errors due to background
include the choice of its Dt distribution and resolution
description �60.002 ps21�, variation of the sum of back-
ground fractions from the separate mES fits, and the un-
certainty on the magnitude of the small B1 component of

TABLE II. Results for Dmd and a subset of the parameters
obtained from the likelihood fit to the Dt distributions. Dmd
includes small corrections described in the text.

Parameter Fit value Parameter Fit value

Dmd 0.516 6 0.016
w (Lepton) 0.079 6 0.014 w (NT1) 0.219 6 0.022
w (Kaon) 0.166 6 0.012 w (NT2) 0.344 6 0.020
S1 (Run1) 1.37 6 0.09 S1 (Run2) 1.18 6 0.11
f2 (Run1) 0.014 6 0.020 f2 (Run2) 0.015 6 0.010
f3 (Run1) 0.008 6 0.004 f3 (Run2) 0.000 6 0.014
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the signal �60.002 ps21�. A correction of 20.002 ps21,
derived from data, is made to account for the small varia-
tion of the background composition as a function of mES,
which affects the background Dt distribution. The sta-
tistical error �60.002 ps21� on this correction is included
as a systematic uncertainty. An additional correction of
20.007 ps21 is applied for a bias observed in fully simu-
lated Monte Carlo events. The bias is mainly due to
correlations between the mistag rate and the Dt resolu-
tion that are not explicitly incorporated into the likelihood
function. The systematic error assigned to this correc-
tion includes contributions from the statistical precision of
the Monte Carlo study �60.003 ps21�, model variations
due to uncertain branching fractions and lifetimes of the
tag-side D mesons and the assumed fraction of wrong-sign
kaons produced in B decays �60.001 ps21�, and varia-
tion of the requirement on the maximum allowed value of
sDt �60.003 ps21�. Finally, the variation of the fixed B0

lifetime within the known errors [5] leads to a systematic
uncertainty of 60.006 ps21.
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FIG. 2. Distributions of Dt data for the selected (a) unmixed
and (b) mixed events [mES�Brec� . 5.27 GeV�c2], with pro-
jections of the likelihood fit (solid) and the contribution of the
background (dashed) overlaid. The time-dependent mixing
asymmetry Amix�jDtj� is shown in (c).
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In conclusion, a new technique involving the time-
difference distribution of a tagged sample of fully recon-
structed neutral B decays has been used to determine the
B0-B 0 mixing frequency Dmd to be

Dmd � 0.516 6 0.016�stat� 6 0.010�syst� ps21.

This is one of the single most precise measurements avail-
able, with an error still dominated by the sample size. The
sample consists almost entirely of neutral B mesons, with
excellent control of both flavor tagging for the recoil B
and measurement of the vertex separation between recon-
structed and tagged B meson. The result is consistent with
the current world average [5] and a recent BABAR mea-
surement with a dilepton sample [11]. The analysis shares
the same flavor-eigenstate sample, and tagging and ver-
texing algorithms as used for the determination of sin2b,
thereby providing an essential validation for the reported
sin2b result [6].
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