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Statistics of Magnetic Noise in Neutron Star Crusts
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The neutron star crust magnetodynamics is demonstrated to exhibit erratic jumps at the fields corre-
sponding to a sharp change of nuclide magnetic moments induced by quantization effects. Such a noise
originates from magnetic avalanches and shows intensity and statistical properties which are favorably
compared to the burst activity of soft gamma repeaters.
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The discovery of a superintense gamma-ray outburst
(giant flare) from SGR 0526-66 on 5 March 1979 [1,2] is
related to pioneering observations of soft gamma repeaters
(SGRs). Almost a copy of such a superhigh luminosity,
LG � 1044.5 ergs, flare was seen on 27 August 1998 from
SGR 1900 1 14 [3]. Many properties of both events,
such as a sharp change in the persistent x-ray flux during
the giant flare [4] and a multipeaked pulse profile [5,6], in-
dicate very large magnetic fields of essentially multipolar
geometry with dipole components Bdipole � �4 8� 3

1014 G, revealed from the magnetic-braking spin-down
mechanism [7]. Estimates based on applications of
the Newtonian scalar virial theorem [8] in conjunction
with numerical calculations (see, e.g., [9,10]) assert the
possibility of significantly stronger stellar magnetic fields
suggesting thereby that multipole components in inner
star regions (e.g., crust) can be larger by about 2–3 orders
of magnitude than on the surface, in the same manner as
solar magnetic fields [11].

The observations intensified during the past decade
(see, e.g., [3–7,12–19] and references therein) reveal
that SGRs commonly emit short (�0.1 s) outbursts with
LX � 103 104LEdd far above the Eddington limit LEdd

[20], while sub-Eddington persistent x-ray luminosities
LP � 1027.5 1029 W are similar to anomalous x-ray
pulsars (AXPs). During short (typically, weeks to months)
intervals the intensive burst activity displays signals of
self-organized criticality, e.g., power law dependence of
the burst number on the intensity, log normal distribution
of waiting times between the bursts [13–16]. Such
active phases are separated by relatively long (years) and
quasiregular quiescent periods [7].

Many of SGR’s features are well explained within the
concept of ultramagnetized neutron stars (“magnetars”)
[5,6,9,21]. SGR bursts have been proposed [21] to origi-
nate from solid crust fractures induced by magnetic fields.
However, some observations, such as the quasiperiodic-
ity of active phases and rather stable, without noticeable
spin-up glitches, spinning down, controvert such a star-
quake triggering mechanism and stimulate the search for
alternative models, e.g., collisions of a strange star with
asteroids [22], effects of boson condensation in the super-
conducting core [23].
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We argue in this paper that such properties can also be
well understood within the “magnetar” concept by explor-
ing triggering mechanisms associated with the release of
magnetic energy stored in neutron star crusts [24]. The
intervals of intense activity are related to a sharp, step-
like change of the magnetization because of inhomoge-
neous crust structure [24–26]. At such conditions the
demagnetization proceeds as erratic jumps associated with
magnetic avalanches and sharp energy injection to the
magnetosphere. Such processes are similar to those known
for the Barkhausen effect (see, e.g., [27]) but arise in
strongly magnetized media at the energy scale larger by
about 30 orders of magnitude.

This paper focuses on an example of outer crusts which
consists of nearly spherical nuclei of a mass number A with
an average density of bound nucleons DNb � A�VWS,
related to the Wigner-Seitz volume VWS and estimated
as tenths of normal nuclear density D0 (see, e.g., [28]
and references therein). The nucleons populate discrete
energy levels in such strongly inhomogeneous matter.
At field strengths bn � 1016 1017 G corresponding to
crossings of nuclear levels the structure of nuclei changes
dramatically [24–26] leading, in particular, to an abrupt
stepwise field dependence of a nucleus magnetic moment
m � mN

P
n nnu�b 2 bn� with the nucleon magneton

mN and step function u�x , 0� � 0, u�x $ 0� � 1. It
is worthwhile to notice similar quantum fluctuations of
the magnetization for rod and plate configurations of
inner crusts [28], while analogous jump anomalies for
delocalized electrons are known as the de Haas–van
Alphen effect [27].

We consider the outer crusts as polycrystalline structures
with nuclei arranged in a close packed (plausibly bcc [28])
lattice and assume the dipolar interaction between mag-
netic moments. Since such a system shows ferromagnetic
ordering (cf., e.g., [29]), the crusts can be viewed as a hy-
percubic lattice of P domains. The magnetization of the
ith domain,

Pi �
mi

VWS
�

mi

AmN
p, p �

DNb

D0
1015 Oe , (1)

is determined by the local field
© 2002 The American Physical Society 221101-1



VOLUME 88, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 2002
bi � H�t� 1 J
X

j[NN
Pj 2 hP 1 fi . (2)

Here the adiabatically changing (see below), with time
t, magnetic field H originates plausibly from the star
core, the term containing an overall magnetization
P �

PP
i�1 Pi�P, and parameter h accounts for the de-

magnetizing effect in a global form [27], while the nearest-
neighbor (NN) domains contribute with the coupling
strength J. The random fields fi � fst

i 1 fd
i imple-

ment an uncorrelated disorder as well as fluctuations,
and are assumed to satisfy the Gaussian distribution
W � f� � exp�2f2�2R2��

p
2p R, as one expects from the

central limit theorem. The static random component fst
i

simulates irregular crystalline anisotropies and arbitrary
varying interaction strengths caused by inhomogeneities
and disorder in the form of defects, grain boundaries, and
impurities in the crystalline structures. The dynamical
component fd

i accounts for interaction and correlation
effects beyond the NN coupling and, therefore, it is de-
termined by a certain configuration of moments �mi�. We
refer to such a model as a randomly jumping interacting
moments (RJIM) model.

The conditions bn11 2 bi ¿ R and bi 2 bn ¿ R cor-
respond to a quiescent phase of star evolution when almost
all the moments equal to Mn � mN

Pn
k�1 nk . For mag-

netic fields of considered strengths the estimates based on
nonlinear terms in Ohm’s law [30] due to ambipolar dif-
fusion [31] yield a relatively short diffusion time of about
101.5 yr. Such high rates might be detected by indirect
measurements (see, e.g., [32] and references therein) dur-
ing a couple of years. The recent analysis [33] of field
evolution indicates that period clustering of magnetars is
consistent with an assumption of magnetic field confined
to the crust with its decay induced by Hall cascade.

As the magnetic field decreases the moment domains
progressively jump to Mn21, Mn22, . . . , when the dif-
ference between local effective fields bi [Eq. (2)] and the
respective quantities bn, bn21, . . . changes sign. Because
of the nearest-neighbor interaction, the jumping moment
can result in the jump of a neighbor domain, which in
turn might lead to the reducing moment of another neigh-
bor, and so on, generating thereby an avalanche of moment
jumps. The linear speed cm of the avalanche propagation is
determined by the ratio of the lattice constant a � 10 fm
and the relaxation time tN � 10220.5 s for nuclear re-
configuration associated with magnetic response, cm �
a�tN � 108 cm�s (for more details see [24]). Then for
outer crusts of a linear size, lcrust � 100 m, the estimate
of the avalanche spanning time, tav � lcrust�cm � 0.1 ms,
is consistent with the rising time of SGR bursts [1–3,6,12].
The field H�t� remains almost constant on the time scale
tav, while the magnetization reduces sharply on a value
proportional to the avalanche size. The corresponding
excess of magnetic energy is released in the magneto-
sphere. Since the velocity of magnetoplasma waves (i.e.,
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Alfvén waves) is close to the speed of light c, the linear
size of the strongly excited magnetosphere region exceeds
the value R � lcrustc�cm, comparable to the neutron star
radius. Subsequent cooling of photon-electron-positron
plasma via gamma-ray emission from this region gener-
ates a SGR-burst event [21].

By assuming the field strength H � 1016.5 G and em-
ploying an estimate [Eq. (1)], the upper limit of emitted
energy is evaluated as

ESGR
max � HP l3crust � 1042 ergs (3)

and is found to be in a good agreement with SGR-burst
observations. When demagnetization jumps involve the
inner crust as well, the avalanche linear size is an order
of magnitude larger and the energy release extends up to
1044.5 ergs, a value corresponding to giant flare events.

Employing the mean-field approximation the contribu-
tion of NN domains J

P
NN Pj to the local field Eq. (2)

is replaced by an interaction with the overall magnetiza-
tion P of the system. Then random fields can be viewed
as mean-field fluctuations (cf., e.g., [34]). For simplicity
we consider hereafter a single jump in stepwise mi at the
field strength b1 with n1 � 1. The average number of re-
ducing moments n̄ind caused by a jump of one domain is
given by the probability of finding a random field within
an interval [h, h 1 Jeffp�P] weighted with the domain
number P. Here h � b1 2 JeffP̄ 2 H, and the coupling
constant Jeff � J 2 h is effectively reduced because of
the demagnetizing effect. At Jeffp�P ø R we evaluate
n̄ind � JeffpW �h�.

Calculating the ensemble average magnetization P̄
gives the mean-field magnetic equation of state (MEOS)

P̄ � p
Z

W� f�mi df �
p
2

µ
1 1 erf

∑
2h
p

2 R

∏∂
(4)

with the error function erf �x	.
The negatively defined magnetic susceptibility

x � dP̄ �dH � p��W�h�21 2 Jeffp	 corresponds to
n̄ind . 1, and yields the adiabatic spinodal region
located between the singularity lines (i.e., critical
fields) H6

c �R� � b1 2 �Jeffp�2� ���1 6 p3�2r
p

2 ln�r� 7

erf �
p

2 ln�r�	��� which meet at the critical point
�Hc, Rc� � �b1 2 �Jeffp�2�, Jeffp�

p
2p�. Here r �p

2p R�Jeffp, and 1 �2� indicates the upper (lower)
spinodal line. With increasing demagnetization energy
(i.e., parameter h) the spinodal region narrows, indicating
thereby dynamical tuning to critical fields. At such fields
Hc the magnetization curve P̄ �H� shows diverging slope,
while n̄ind � 1. In the vicinity of such a region on the
�H, R� plane the system exhibits the widest distribution of
avalanche sizes with a power law behavior.

Thus when the magnetic field approaches critical values
the star enters the phase of intensified burst activity. The
expectation time Ts for an inactive evolution is then deter-
mined by the ratio of the spacing bjmp in magnetic moment
jump anomalies and the change rate �B of the overall field
221101-2
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[24] Ts � 2bjmp� �B. Since the magnetic energy FB � B2

dominates and powers the emission we find �B � 2Lp�B.
Using the familiar [20] relation for fields on star magnetic
poles, Bp �

p
Lp, and assuming the proportionality with

the crust field, B � Bp, we obtain T2
s Lp � const. As il-

lustrated in Fig. 1, SGR observables are well reproduced
by this expression. Such systematics predict an expectation
time of 3–4 years for the periodicity of intensive burst sets
for SGR 1627-41 [19], suggesting thereby the next proba-
ble active phase in the fall of 2001 or 2002.

The cumulative avalanche size distribution in the vicin-
ity of the critical point is compared in Fig. 2 with the cu-
mulative fluence distribution, i.e., the burst number with
a fluence exceeding the certain value. The observations
by various missions are in good agreement with simula-
tions, when accounting for the scale of the energy release
[Eq. (3)], remoteness �10 kpc (e.g., [6,12]), and isotropic
emission of the sources. Such an event number depen-
dence is well fitted by the power law with an exponent
0.67 which corresponds to the value 1.67 for the differ-
ential distribution and provides a signal of self-organized
criticality in the burst statistics.

As seen in Fig. 3 for different SGRs the waiting time
distributions as a function of the reduced time, i.e., the time
divided by the time at the maximum, display a universal
function. The data are well reproduced by simulations and
fitted in the vicinity of a maximum by the log normal func-
tion. Such a property points out the single time scale for
SGR-burst triggering processes. Within RJIM such a time
scale is determined by the ratio of the disorder parame-
ter R and the field change rate: t � R� �B. Therefore, the
scaling with respective time leads to a universal function.

In summary, the magnetodynamics of neutron star
crusts have been considered within the RJIM model
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FIG. 1. Period of SGR’s active phases versus the persistent
luminosity. The solid squares represent observational data from
[1,2,15–17] for SGR 1900 1 14, from [18] for SGR 1806-20,
from [35] for SGR 0526-66, as also discussed in [22]. The
solid line indicates the systematics with const � 1043.5 erg ? s
(see text). The open square shows an expected position
for SGR 1627-41 according to the persistent luminosity
Lp � 1028 W [19].
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accounting in a phenomenological manner for quantum
fluctuations due to the discrete level structure, internuclide
coupling, disorder, and demagnetization energy. The
comparison of model predictions with observational
data allows one, therefore, to quantify crust properties
in terms of the respective set of parameters, introduced
here hypothetically. As demonstrated, at magnetic fields
corresponding to jump anomalies of nuclide magnetic
moments (caused by, e.g., level crossings), the demag-
netization proceeds as sharp steps due to avalanche
propagations. As a consequence, sudden energy releases
to the magnetosphere lead to SGR bursts. The crust
seismic activity is not implied within such a triggering
mechanism, corroborative with a lack of spin-up glitches
in the rotation of such pulsars. The quasiperiodic (with
the field) magnetic moment jumps are consistent with
some regularities in the SGR-burst emissions. As shown
the scaling properties predicted by the RJIM model for,
e.g., the burst intensity and waiting time distributions,
are in good agreement with SGR observations sup-
porting thereby the credibility of the RJIM model. As
implied within considered treatment the specific clas-
sifying feature of SGRs is plausibly represented by the
crust ultrastrong multipolar magnetic field components
matching the strength region of important quantization
effects in nuclide magnetization. For outer crusts such
fields exceed 1016 G, while weaker fields are expected
for neutron-rich nuclides of inner crusts [24–26]. Further
implications of the proposed magnetic emission mecha-
nism in the analysis of SGR activity can provide better
understanding of neutron star crust, in particular, strengths
and evolution of magnetic fields.
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FIG. 2. Normalized cumulative fluence distribution in arbi-
trary (arb.) units of SGR bursts. The results of the RXTE and
BATSE observations for SGR 1900 1 14 from [15] are shown
by squares and circles, respectively. RXTE (diamonds), BATSE
(up-triangles), and ICE (down-triangles) data for SGR 1806-20
are from [16]. The solid line represents the avalanche size dis-
tribution from RJIM for the cubic lattice of a size �150�3. The
dashed line denotes the power law distribution.
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FIG. 3. The reduced waiting time distribution between the suc-
cessive RXTE�PCA bursts from SGR 1900 1 14 (squares) 15]
and SGR 1806-20 (diamonds) [16] is compared with the wait-
ing time distribution between avalanches (solid curve). The
dashed line represents the fit to the log normal distribution of the
width 3.6.

Finally, we note that arrays of atomic clusters and/or
quantum dots (see, e.g., [36]) can display similar noisy
magnetodynamics at conditions far from magnetization re-
versal. Such an effect might be employed as a tool to ana-
lyze the roughness and disorder in an array.
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