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We present a renormalization group treatment of metamagnetic quantum criticality in metals. We
show that for clean systems the universality class is that of the overdamped, conserving (dynamical
exponent z � 3) Ising type. We obtain detailed results for the field and temperature dependence of
physical quantities including the differential susceptibility, resistivity, and specific heat. Our results are
shown to be in quantitative agreement with data on Sr3Ru2O7 except very near to the critical point itself.
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Quantum phase transitions in itinerant electron sys-
tems have been intensively investigated recently [1–3],
because of the intrinsic interest of quantum criticality, the
non-Fermi-liquid behavior near the critical point, and the
possibility of novel ground states including non-s-wave
superconductivity. An apparently controlled theory has
been presented [2], but many of the experimental realiza-
tions show deviations from the predicted behavior [4].
It is presently controversial whether a straightforward
modification (interplane frustration reducing the effective
dimensionality, or a disorder induced crossover [5]) will
solve the discrepancy, whether more fundamental modi-
fications are required such as “spectator modes” [6], or
whether the whole picture should be scrapped in favor of a
new kind of criticality [7].

In this Letter we present the first renormalization group
treatment of a new type of quantum criticality, namely, the
metamagnetic quantum critical end point. Metallic meta-
magnetism was studied via mean field theory [8,9] and via
the “SCR” method [10]. To date, however, the critical phe-
nomena have not been investigated. The significance of our
work is that we show that this new type of quantum critical
behavior provides a clean test of the original [1,2] frame-
work and the complicating factors added by other workers
do not apply here. By a direct comparison of our theory
with experiments [11], we show that Sr3Ru2O7 is close to a
quantum critical end point. Our theory explains a number
of outstanding issues in this system: the finite temperature
peak in the weak-field susceptibility [12] and the paramag-
netic ground state in a metal that should, according to band
structure calculations, be ferromagnetic [13]. One should
further note that at the metamagnetic critical end point the
material does not have a well-defined Fermi surface: the
positions of the “spin-up” and “spin-down” Fermi surfaces
undergo critical fluctuations leading to “non-Fermi-liquid”
physics.
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A metamagnetic transition is empirically defined as a
rapid increase in magnetization at a particular value of ap-
plied magnetic field. Because there is no broken symme-
try involved, one expects a first order transition from a
low magnetization to a high magnetization state as an ap-
plied magnetic field H is swept through a (temperature
dependent) critical value Hmm�T�. The curve of first order
transitions Hmm�T� terminates in a critical point �H�,T��.
By appropriately tuning material parameters it is possible
to reduce T� to 0, yielding a quantum-critical end point.
This situation is depicted in Fig. 1: (b) shows a typical
metamagnetic line and the critical end point in the field-
temperature plane and (a) shows a possible variation of the
temperature of the critical end point with pressure. It has
been argued [11,14] that at ambient pressure Sr3Ru2O7 is
naturally tuned to a quantum critical end point at moderate
magnetic fields.

Quotes are placed about “spin-up” and “spin-down” be-
cause in many metamagnetic materials spin-orbit coupling
is large and spin is not a good quantum number. However,
for most purposes one may adopt a “pseudospin” notation
[15] labeling the two Kramers-degenerate states in zero

FIG. 1. (a) Schematic phase diagram, showing a variation
of the end point of a line of metamagnetic first order phase
transitions as the control parameter (e.g., pressure) is varied.
(b) Schematic phase diagram in the H , T plane for p , p0
showing a metamagnetic line and location of the end point.
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field. The Kramer’s degeneracy is broken by an applied
field, leading to two Fermi surfaces and the theory carries
through as in the non-spin-orbit case with one important
exception noted below: if spin-orbit coupling is strong,
impurity scattering may affect the dynamics differently.

Our key assumption (which is the basis of the stan-
dard [1,2] theory of metallic quantum criticality) is that
the electronic degrees of freedom may be integrated out
leaving a model of an overdamped bosonic mode which
may then be analyzed by renormalization group methods.
For the case of the metamagnetic quantum end point, the
tuning parameter (magnetic field) is conjugate to the order
parameter allowing an unambiguous identification of the
relevant fluctuations: longitudinal fluctuations c�x,t� �
�jmj 2 mav�H����m0 of the magnetization density m about
its average value mav at the critical field H�, normalized to
some typical magnetization density m0 (for example, the
high-field saturation magnetization). We define the critical
field H� by the requirement that at T � 0 the action has
no static third order terms. We write h � �H 2 H���H�,
introduce a cutoff length a (for example, the lattice con-
stant), and define an energy scale Ec by the requirement
that the coefficient of the static quartic term is 1�4. The
action in d space dimensions and imaginary time becomes

Smeta � Sdyn 1
Z ddx

ad Ec dt

3

∑
1
2
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0�=c�2 1 dc2 1
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∏
.
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Here d (which may be varied, e.g., by changing pressure)
tunes the system through the metamagnetic critical point
and Sdyn (discussed below) expresses the order-parameter
dynamics.

We have used a conventional gradient expansion for the
static part of the action and assumed that the coefficients
are simple numbers and that the parameters vary with tem-
perature only as T2 , as usual in Fermi-liquid theory. For an
O�3� ferromagnetic quantum critical point this may not be
the case [16,17], but in the presence of a symmetry break-
ing field, the T2 and gradient expansions are believed [6]
to apply.

The dynamic part Sdyn follows because the order pa-
rameter is essentially the difference in position of the
spin-up and spin-down Fermi surfaces. Fluctuations at
nonzero q correspond to locally increasing the number of
spin-up electrons and decreasing the number of spin-down
electrons. If spin is conserved such a fluctuation can re-
lax only via propagation or diffusion of electrons within
each spin manifold. In a clean spin-orbit-coupled system,
pseudospin is conserved (at least for fields aligned along
a crystal symmetry axis) and the same arguments apply.
Therefore, in a clean system one expects (the term is most
conveniently written in frequency-momentum space)

Sdyn �
T

Ec

X
n

Z adddq

�2p�d

jvnj

yjqj
jc�q, vn �j2 1 . . . , (2)
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corresponding to overdamped but conserved fluctuations,
and yielding the dynamical exponent z � 3. Here y is
a velocity, presumably of the order of the Fermi veloc-
ity and c�q,vn � �

R ddx
ad Ec dt ei �q?�x2ivntc�x, t�. Note

that we are concerned only with longitudinal fluctuations,
so “precession” terms ≠t

�c ? =2 �c 3 �c are not important.
Strong (pseudo)-spin-conserving scattering would lead to
diffusion (jvnj�yq ! jvnj�Dq2� changing z to 4. A
momentum non-conserving spin orbit coupling (as from
impurities in the presence of strong spin orbit scattering)
would lead to relaxation (i.e., Eq. (2) with yq replaced by
a momentum independent scattering rate) implying z � 2.
An important scale is the characteristic energy vsf of a
spin fluctuation at momentum qc � 1�a, vsf � yj

2
0 q3

c.
Typical vsf values for transition metal magnets are of the
order of 500 K; for heavy fermion systems they are at least
an order of magnitude smaller [18].

We analyze the theory by the usual one loop renormal-
ization group equations [2] which, after mode elimination
and rescaling, relate the theory with parameters d,u, h to
a new theory with parameters d0, u0, h0. The behavior at
h � 0 has been previously reported [2]; we focus here on
the h dependence. The scaling equations are (we assume
henceforth that z � 3)

≠d

≠l
� 2d 1 3u�l�f�T�l�� , (3)

≠u

≠l
� �1 2 d�u�l� . (4)

The field h scales as h�l� � e��d15��2�l and T �l� � Te3l.
The effect of eliminated modes on d is contained in f
which is calculated by expanding the theory about the
value c�dh� which extremizes the static part of Smeta at
the rescaled field, and then using the Gaussian approxi-
mation to the resulting action to evaluate the integral over
eliminated modes. Operationally, this means that we cal-
culate f assuming the scales of interest are larger than
the running “mass” reff � d 1 3uc

2 and then stop scal-
ing at reff � 1. Expressing momenta and frequencies

in units of qc � 1�a and vsf, then f � L
R0 ddu

�2p�d
dy
p 3

coth� y
2t � y�u

� y�u�21u4 with L � �vsf�Ec� �a�j0�2 (the 0 de-
notes summation over eliminated modes).

The solution of Eqs. (3) and (4) follows [2] and is dis-
cussed in detail elsewhere [19]. Because in all cases of
physical interest the model is at or above its upper criti-
cal dimension, quantal fluctuations lead only to a finite
renormalization of the T � 0 parameters of Smeta while
thermal fluctuations are controlled by a “dangerous irrele-
vant operator,” so the effects of quantal fluctuations may
be absorbed into the T � 0 parameters and only thermal
effects need be explicitly treated. We note, however, that
the effects of quantal fluctuations are not small in general.
Thus band theory predictions of parameters of the model
(such as u) are a priori not a good estimate of the low
energy properties. Further, their sign reduces the tendency
to order predicted by band theory [13].
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The results of the calculation may be summarized as fol-
lows. At d � 0 (i.e., parameters tuned so that the material
is at the metamagnetic quantum critical point) as T ! 0
the differential susceptibility ≠m�≠h scales as u1�3h22�3;
as T ! 0 the specific heat coefficient g � C�T is pro-
portional to lnh21 in d � 3 and to h21�3 in d � 2 and
the resistivity r�T � has the leading T dependence r�T� 2

r�T � 0� � AT2 with A varying as h21�3 in d � 3 and
as h22�3 in d � 2. The crossover to the thermally domi-
nated regime occurs at T � h1�2 (d � 3) and T � h2�3

(d � 2). If d . 0 then the scaling in h is cut off when
h2�3 � d and there is no phase transition in the h, t plane.
If d , 0 then a first order transition occurs as h is varied at
217204-3
T � 0; a line of first order transitions extends upwards in
the h, T plane and terminates at a critical end-point tem-
perature T� � dz��d1z22�. Finally, we note that correc-
tions to scaling may be numerically important, as is seen
from the numerical results below.

The preceding considerations were generic. It is pos-
sible to proceed further in the particular case of Sr3Ru2O7,
because it seems (see below) that at ambient field this
material is very near to a weakly first order ferromagnetic-
paramagnetic quantum phase transition. The physics over
a wide range of fields and temperatures should therefore
be describable by a generalized Ginzburg-Landau action
for a three-component order parameter f (corresponding
to long wavelength fluctuations of the magnetization):
S0 � Sdyn 1
Z ddx

ad dt

Ω
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æ
. (5)
Here repeated indices are summed, the ellipsis denotes
higher order terms, and the notations are as above, except
that we have added a sixth order term and here the pa-
rameters r, uab ,yabc have dimension of energy. The data
(isotropic susceptibility as T ! 0 but some angle depen-
dence at higher fields and temperatures) require a breaking
of rotational invariance in the mode-coupling terms, but
not in the quadratic one. We take f to be a dimensionless
magnetization variable measured in units of the putative
saturation magnetization 2mB�Ru (the important electrons
are d electrons, of which there are four in the t2g orbitals,
leaving two holes, and the g factor should be close to
2). Scaling is as described previously, except the sixth
order term renormalizes the fourth order one and in the
presence of a field the mass (coefficient of the quadratic
part of the fluctuations) becomes anisotropic, with the
component corresponding to fluctuations along the field
becoming reff � r 1 3uf

2
1 5yf

4
. A Heisenberg-

XY or Heisenberg-Ising crossover occurs when the larger
of reff or r passes through unity and scaling stops when
the smaller of the two becomes of order unity. In the
Heisenberg regime extra precession terms in the dynamics
may be important. A detailed analysis of the behavior of
this model will be presented elsewhere [19], extending
the important work of Yamada and collaborators [10],
who showed that such an analysis was possible but did
not consider the precession terms or anisotropic scaling
and also used a simplified version of the SCR theory
instead of the renormalization group method. At T � 0,
one may use mean field theory provided one interprets
the parameters in Eq. (5) as renormalized parameters. If
9u2�20y . r . 3u2�16y and u , 0 (for simplicity we
do not write the directional subscripts here) the model has
a T � 0 metamagnetic transition. The point r � 9u2�20y

corresponds to the quantum critical end point. At the
quantum-critical end point the magnetization m � � �f�
and magnetic field H� are, for fields in the c direction,
m�
c �

s
23ucc

10yccc
, geffmBH�

c �

s
23ucc

10yccc

6u2
cc

ccc
. (6)

Figure 1 of Ref. [11] shows that at low T and low ap-
plied field the susceptibility is about 0.025mB�T implying
r 	 160mB 2 T 	 100 K. This small value implies a
very large enhancement of the susceptibility over the band
value, as noted previously, and implies that the material is
near a paramagnetic-ferromagnetic transition. For fields
directed along the c axis the observed metamagnetic tran-
sition occurs at a magnetization of about 0.25 0.3mB�
Ru implying ucc � 3000 4300 K and yccc � 40 000
80 000 K with the larger values corresponding to the
smaller m. The consistency of these estimates may be veri-
fied by substitution into Eq. (6); use of geff � 2 yields an
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FIG. 2. Differential susceptibility, x
21
0 �≠m�≠h�, as a function

of applied field H at temperatures T�T0 � 0.05, 0.1, 0.2, for a
two dimensional metamagnetic critical point. Inset: Dependence
of x

21
0 �≠m�≠h� on temperature T at h � 0.01, 0.02, 0.04, 0.08.

(Normalizations are discussed in text.)
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FIG. 3. Dependence of specific heat coefficient C�T on tem-
perature T for h � 0.01, 0.1, 0.2, 0.4 calculated for a two di-
mensional metamagnetic critical point. Inset: Dependence of
resistivity exponent ≠ lnr�≠ lnT on T for h�H� � 0 (lower
curve) and 0.1 (upper curve). (T0 is defined in text.)

estimate of 5 6 T for the metamagnetic field, in the range
found experimentally. Expansion of Eq. (5) about the
metamagnetic point yields Eq. (1) with Ec � 22ucc �
6000 8000 K. The dimensionless critical field gmBH��
u � 0.001 so we should be concerned with variations
which are small relative to this, i.e., with h 	 1024.
At present rather less information about the spin fluc-
tuation frequencies is available; we therefore normalize
our results to the temperature T0 at which the differ-
ential susceptibility at the critical field is equal to the
zero-field zero temperature susceptibility; i.e., ≠m

≠h �d � 0,
T � T0� � x�H � 0, T � 0� � x0.

We now present the results of a numerical solution of
the scaling equations. Figure 2 shows the h dependence of
the differential susceptibility for several values of T , ob-
tained in the two dimensional case using parameters rea-
sonable for Sr3Ru2O7. The inset shows the temperature
dependence of the differential susceptibility for different
h. Note the nonmonotonic temperature dependence for
fields different from h � 0 explains the previously myste-
rious peak seen in the experiments on Sr3Ru2O7 and other
materials [12].

Figure 3 shows the specific heat coefficient g � C�T ;
in this quantity the crossover is much less sharp, in part
because a 2D nearly critical Fermi liquid has a specific
heat coefficient g � A 1 BT with both A and B divergent
as the critical point is approached. This is an example
of the corrections to scaling mentioned earlier. The inset
shows the resistivity exponent a � 2≠ lnr�≠ lnT plotted
against temperature for h � 0 and h � 0.1. The high-T
resistivity exponent is not precisely 4�3 because of the
logarithmic corrections alluded to earlier. The crossover
to the expected low-T T2 behavior is very sharp.

In conclusion, we have presented a theory of meta-
magnetic quantum criticality in metals. We have iden-
217204-4
tified the universality class and the form of the order
parameter dynamics, and we presented detailed results
for a range of physical quantities. Our theory accounts
for the unusual temperature dependence of x�T , H � 0�,
the paramagnetic ground state, and the main features of
behavior seen in Sr3Ru2O7 as the metamagnetic critical
point is approached, providing strong support to the
assumptions made in Refs. [1,2] and much other work on
non-Fermi-liquid physics. Subsequent papers [19] will
present details omitted here and a quantitive application
to three dimensional materials and will also determine
whether the anomalous behavior observed very close to
the critical point in Sr3Ru2O7 [14] (which is not consistent
with our results for a metamagnetic critical point at T � 0)
is consistent with a metamagnetic end point at a T slightly
greater than 0 or whether fundamentally new physics
is required.
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