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Motivated by recent experiments by Basov et al., we study the differential sum rule for the effective
scattering rate 1�t�v�. We show that, in a dirty BCS superconductor, the area under 1�t�v� does not
change between the normal and the superconducting states. For magnetically mediated pairing, a similar
result holds between T , Tc and T $ Tc , while, in the pseudogap phase, 1�t�v� is just suppressed
compared to 1�t�v� in the normal state. We argue that this violation of the differential sum rule in the
pseudogap phase is due to the absence of the feedback effects from the pairing.
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The analysis of the optical sum rules in condensed mat-
ter systems is a valuable tool that helps one to understand
the key physics and relevant energy scales in the problem
[1]. The focus of this Letter is the recent experimental
results [2] for the effective relaxation rate t21�v� �
�4p�v

2
pl� Re�1�s�v��, where s�v� � s1�v� 1 is2�v� is

the optical conductivity, v
2
pl � 4pne2�m is the plasma

frequency, and n is the density of particles. The data
analysis for optimally doped YBa2Cu3O6.95 [3] and
Tl2Ba2CuO61x [4] and underdoped YBa2Cu4O8 and
Bi2Sr2CaCu2O81x [2] revealed an approximate differen-
tial sum rule for t21�v� between T $ Tc and T , Tc:
although

R
dv t21�v� does not converge, it changes very

little when the system enters into the superconducting
state. This differential sum rule, however, is not satisfied
between the normal and the pseudogap phases; 1�t�v� in
the pseudogap phase appears to be just suppressed.

The exact sum rules are generally related to conser-
vation laws. The f-sum rule for the optical conductivity
states that at a given density of particles, the total ab-
sorbing power of the solid characterized by s1 does
not depend on the details of the interactions and is
determined only by the total number of particles in the
system [5]. The total absorption power is given byR`

0 dv s1�v�. By applying the Kubo formula that relates
s�v� with the full retarded current-current correlator
P�v�, s�v� � �v2

pl�4p�P�v���2iv 1 d�, separating
the frequency integral into the integral over infinitesimally
small v and the rest, and using the Kramers-Kronig
relation for P�v� 2 1 that vanishes at the highest fre-
quencies, we obtain

R`
0 dv s1�v� � v

2
pl�8 independent

of P�v�.
Is there an analogous sum rule for 1�t�v�? Using

1�t�v� � 2Im�v2�P�v���v and applying the Kramers-
Kronig relation, we findZ `

0

dv

t�v�
�

p

2

∑
Re

v2

P�v�v!0
1 C

∏
�

p

2
C . (1)

The constant C again has to be chosen such that
v2�P�v� 1 C vanishes at v ! `. However, C turns
out to be infinite as at high frequencies P�v� � 1, and
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v2�P�v� diverges. This divergence implies that there is
no conservation law associated with the relaxation rate
and hence no sum rule for 1�t�v�.

Marsiglio et al. [6] recently demonstrated that, at low
frequencies, 1�t�v� is numerically close to the effective
1�teff�v� � 2�v2

pl�4p� Im�1�e�v�� that obeys an exact
sum rule [e�v� � 1 1 4pis�v��v is the dielectric func-
tion]. They argued that one can introduce an approximate
sum rule for 1�t�v� by restricting the frequency integra-
tion to small frequencies. We follow a somewhat different
route and consider whether one can get useful information
by comparing 1�t�v� for two different system parameters,
e.g., temperatures, which do not affect the system behav-
ior at high frequencies. Indeed, according to Eq. (1), if
v2�1�P�v, T1� 2 1�P�v, T2�� vanishes at high frequen-
cies, then the area under 1�t�v� does not change with
T . This would create a valuable tool to study the evolu-
tion of the spectral weight in 1�t�v� between, e.g., the
normal and superconducting states. This new differential
sum rule, however, is not associated with a conservation
law and therefore is not guaranteed to be satisfied —only
explicit calculations can determine whether or not the tem-
perature dependence in P�v, T� is weak enough to ensure
the convergence of the area under 1�t�v�.

In this Letter we study under which conditions the dif-
ferential sum rule for 1�t�v� is actually satisfied, and at
which frequencies it is exhausted. We consider the mag-
netic scenario for the pairing in the cuprates, and argue
that the differential sum is approximately satisfied and ex-
hausted at frequencies comparable to the pairing gap if
there is a strong feedback effect from the pairing on the
fermionic propagator. Without feedback, 1�t�v� appears
to be just lost at these frequencies compared to the normal
state. We associate the first regime with T , Tc, and the
second one with the pseudogap phase.

To put our analysis of the spin mediated pairing into
perspective we first analyze the situation in a dirty BCS
s-wave superconductor at T � 0, when the pairing causes
a strong feedback on the fermionic propagator, and in the
toy model where there is no feedback from the pairing on
the fermionic self-energy.
© 2002 The American Physical Society 217001-1
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The theory of a dirty superconductor is well developed
[7,8]. In the normal state, the inelastic scattering by im-
purities yields a retarded fermionic self-energy S�v� �
i�2t. In a superconducting state, this self-energy is modi-
fied due to a feedback from superconductivity and takes
the form S�v� � �i�2t�v�

p
v2 2 D2, where D is the

superconducting gap [8]. By substituting these forms into
the current-current polarization bubble and performing the
momentum integration, we obtain

P�v� �
Z `

0
dV

1

�
q

V
2
1 2 D2 1

p
V2

2 2 D2 1 i�t�

3

q
V

2
1 2 D2

p
V2

2 2 D2 2 D2 2 V1V2q
V

2
1 2 D2

p
V2

2 2 D2
,

(2)
where V6 � V 6 v�2. In the normal state, this reduces
to a conventional Drude form P�v� � v��v 1 i�t�. In
the superconducting state, the frequency integral in (2)
can be evaluated analytically in the clean limit Dt ¿ 1.
After lengthy but straightforward calculations we found
that both s1�v� and 1�t�v� vanish at v , 2D, while at
larger frequencies

s1�v� �
v

2
pl

4ptv2 E

√s
1 2

4D2

v2

!
,

1
t�v�

�
4ps1�v�v2

v
2
pl

,
(3)

where E�x� is the complete elliptic integral [9]. At v �
2D 1 0, E � p�2 and both s1�v� and 1�t�v� jump to
finite values. At high frequencies, E�x � 1� ! 1, s1�v�
vanishes as v22, and 1�t�v� approaches the normal
state result t�v� � t. To the same order, we also have
P�0� � 1 2 p��8Dt�. We checked analytically that the
f-sum rule �8�v

2
pl�

R`
10 dv s1�v� � 1 2 P�0� is indeed

satisfied.
Expanding E�x� near x � 1, we find that at high

frequencies t21�v� 2 t21 � �2D2�v2t� �log�2v�D� 2

0.5�, i.e.,
R

dv �1�t�v� 2 1�t� converges. The conver-
gence implies that, for a dirty BCS superconductor, the
differential sum rule for 1�t�v� is an exact one, and is
exhausted at frequencies of the order of D. The plots
of s1�v� and 1�t�v� are presented in Fig. 1 together
with the results for Is�v� � �8�v

2
pl�

Rv

0 dx s1�x� and
It�v� � �t�2D�

Rv
0 dx �1�t�x� 2 1�t�.

We next consider the behavior of s1�v� and 1�t�v�
in the toy model in which the pairing does not change
the fermionic self-energy. This model makes sense if the
normal state is not a Fermi liquid, i.e., fermionic self-
energy at low frequencies behaves as S�v� � �iv�av̄12a

with a , 1. Without the feedback effect on fermions,
the fermionic density of states in the presence of the gap
N�v� � Im�S̃�v���D2 2 S̃2�v��1�2� has a maximum at
v � D̃ 	 D1�a�v̄�12a��a, but remains finite at v , D̃

such that D̃ is a pseudogap. For definiteness, we present
the results for a � 1�2, which is the normal state
quantum-critical exponent in the spin-fermion theory
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FIG. 1. The results for s1�v� and 1�t�v� (in arbitrary units)
for a BCS superconductor, to first order in 1�tD (clean limit).
In the dirty limit, the jump in the conductivity at v � 2D is
much smaller. The insets show Is�v� � 8�v

2
pl

Rv

0 dx s1�x�
and It�v� � �t�2D�

Rv

0 dx �1�t�x� 2 1�t�. The arrows indi-
cate the values of Is�`� and It�`�.

[10], but the results are qualitatively the same for all a
including the marginal Fermi liquid limit a ! 1 [11].

For the frequency dependent self-energy S�v�, the
current-current correlator P�v� is still given by Eq. (2),
but with V6 1 S�V6� instead of V6. By evaluating
P�v� and substituting it into s1�v� and 1�t�v�, we
found that, in the normal state, s1,n�v� ~ �vv̄�21�2

at v ø v̄ and s1,n ~ �v̄�v3�1�2 at v ¿ v̄, while
1�tn�v� ~ �vv̄�1�2 in both limits. For D fi 0, we
found that, at v ø D̃, s1�v� ~ �vv̄�21�2�v�D̃�5�2

and 1�t�v� ~ �vv̄�1�2�v�D̃�7�2. We see that s1�v�
and 1�t�v� are reduced compared to their normal state val-
ues but are still finite. At larger D̃ ø v ø v̄, s1�v� �
s1,n�v� 2 1.992�v2

pl�4p�D̃�v3v̄�21�2 and 1�t�v� �
1�tn�v� 2 3.51D̃�v̄�v�1�2. Finally, at v ¿ v̄,
s1�v� 2 s1,n�v� ~ v27�2 logv and 1�t�v� 2 1�tn�v� ~

v3�2 logv.
We see that s1�v� converges to its normal state value

at frequencies of order D̃, as in a dirty BCS superconduc-
tor; the sum rule for s1�v� is then exhausted at v 	 D̃.
This behavior is illustrated in Fig. 2b, where we present
the results of our numerical calculations. Is�v� converges
to Is�`� � 1 2 P�0� (�0.67 for our choice of v̄ � 2D)
already at V 	 D̃. On the other hand, t21�v� 2 t21

n �v�
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FIG. 2. The results for 1�t�v� (a) and s1�v� (b) for a toy
model in which the pairing is not accompanied by the feedback
on the electrons. The frequency is in the units of D̃ (the peak
frequency in the density of states). We used D̃ � 0.25v̄. Ob-
serve that 1�t�v� is just suppressed at v � O�D̃�, and the dif-
ferential It�v� [(a) inset] converges to zero only at v 	 103D̃
(not shown). On the other hand, Is�v� [(b) inset] converges to
Is�`� � 0.67 (dashed line) already at v 	 4D.
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scales as v21�2 between v 	 D̃ and v 	 v̄ such that,
at these frequencies, It�v� �

R
dv �t21�v� 2 t21

n �v��
does not converge. Furthermore, at these frequencies,
1�t�v� is still smaller than 1�tn�v�. This result holds
for all a , 1 as one can straightforwardly verify. Only
at v . v̄, t21�v� finally becomes larger than t21

n �v�,
and It�v� converges. The convergence implies that the
differential sum rule for 1�t�v� is again exactly satisfied;
however it is exhausted only at frequencies that well ex-
ceed the pseudogap. We present the numerical results for
1�t�v� and It�v� in Fig. 2a.

We now present the results for s1�v� and 1�t�v� for
spin-fluctuation mediated d-wave pairing. We obtained
these results by solving a set of coupled Eliashberg
equations for the spin-fermion model that describes the
spin-fluctuation exchange at low energies [12]. We will
demonstrate that, at low T , the behavior of the conductiv-
ity and the relaxation rate resembles that in a dirty BCS
superconductor, while immediately below the pairing
instability the system behavior is similar to that in the toy
model for the pseudogap.

The spin-fermion model is characterized by a single
dimensionless coupling constant l and a single overall
energy v̄ that scales with the effective spin-fermion inter-
action [10]. We will also use a characteristic energy scale
for the spin fluctuations vsf � v̄�4l2. A fit to the NMR,
angle-resolved photoemission spectroscopy, and neutron
experiments yields l 	 1 2 near the optimal doping [10].
We refer the readers to Ref. [10] for the discussion of the
applicability of the model to the cuprates and the justi-
fication of the Eliashberg approach at strong spin-fermion
coupling despite the formal absence of the Migdal theorem.
The application of this model to conductivity calculations
requires extra care as l and v

21
sf � 4l2�v̄ vary along

the Fermi surface being the largest near hot spots. We,
however, checked explicitly in earlier works that this vari-
ation is only relevant at low frequencies v # vsf , while,
at larger v, l and vsf appear only in a combination l2vsf

that is independent of the position at the Fermi surface.
Furthermore, even at v , vsf , the variation of l along
the Fermi surface in optimally doped cuprates turns out to
be modest numerically (l changes by about a factor of 2
between hot and cold points [13]). This modest variation
does not affect the physics and is within the uncertainty of
l. We neglect it in our analysis, present the results for both
l � 1 and l � 2, and show that they are quite similar.

We begin with the normal state. In Fig. 3a we present
our results for 1�t�v� and It�v� at various T . For defi-
niteness we set l � 2. We see that It�v� diverges at high
frequencies, i.e., the differential sum rule is not satisfied.
We checked analytically that this is caused by the 1�v

behavior of the integrand in It�v�. In Fig. 3b we present
the results for s1�v� and Is�v� at various T . We see that
Is�v� flattens at v $ 10vsf , but its value is still about
30% smaller than it should be for v � `. The full sum
rule is exhausted only at unrealistically large v 	 103vsf

(Ref. [10]), where the low-energy theory is clearly inap-
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FIG. 3. The normal state results for 1�t�v� (a) and s1�v�
(b) for the spin-fermion model for l � 2. The insets show
Is�v� and the differential It�v� between T � vsf�3 and T �
2vsf�3. The sum rule for 1�t�v� is not satisfied due to weak
convergence at high frequencies. Is�v� flattens at v 	 10vsf
but converges to the f-sum rule value Is�`� � 1 only at ex-
tremely high v 	 103vsf (not shown).

plicable. The weak convergence of Is�v� is related to the
fact that over a wide frequency range s1�v� is inversely
proportional to v, and Is�v� increases as logv [10,14].

We next consider what happens below the pairing in-
stability temperature Tins 	 0.2v̄ [15]. Earlier we and
Schmalian found [12] that, at T # Tins, the fermionic
self-energy remains large at the smallest v and smoothly
evolves from its normal state value. It drops at the low-
est v, due to a feedback from the pairing only below
Tc , Tins, and the difference between Tins and Tc in-
creases with increasing l. This gradual behavior is qualita-
tively different from a dirty BCS superconductor; as in the
latter the quasiparticle spectral function instantly drops to
zero at frequencies below D due to a feedback from the
pairing [7,8]. We conjectured that, at Tc , T , Tins, fluc-
tuations destroy coherent superconductivity, i.e., the sys-
tem is in the pseudogap regime.

In Fig. 4 we present the results for 1�t�v� for two
different l and three different temperatures: T ø Tc,
T $ Tc, and T � Tins, where 1�t�v� is the same as in the
normal state. We see that, between Tins and Tc, 1�t�v� is
nearly homogeneously suppressed, while between Tc and
T ø Tc it develops an overshoot at v $ 2D. The magni-
tude of the overshoot depends on the coupling and is larger
at larger l, when there is also a larger reduction of 1�t
between Tins and Tc. Figure 4 also presents our results for
the differential sum rule between T 	 Tc and T ø Tc and
between Tins and Tc. We see that between Tins and Tc the
spectral weight is just lost, while between Tc and T ø Tc

it is approximately conserved. The near conservation of
the spectral weight particularly holds if the upper limit of
the frequency integral is chosen close to 3 4v̄ 	 10D. If
the integration is extended to larger v, It between T ø Tc

and Tc progressively increases, but Fig. 4 shows that the
rate of variation of It is very small compared to It between
Tc and Tins.

The conservation of the spectral weight between T ø

Tc and T $ Tc and the loss of the spectral weight be-
tween Tc and Tins are the main results of recent experi-
mental analysis of optimally doped YBCO [2]. In these
217001-3
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FIG. 4. The 1�t�v� and the differential sum rule It for the
spin-fermion model for l � 2 (D 	 0.3v̄, Tc 	 0.3Tins) and
l � 1 (D 	 0.2v̄, Tc 	 0.5Tins). The temperatures between
which It was computed are indicated on the plots. Observe
that the overshoot between the spectra of 1�t�v� develops only
below Tc .

experiments, the frequency integration was performed up
to 2500 3000 cm21 that is close to 10D. These results
are reproduced in our analysis. For larger frequencies, the
measured differential sum rule becomes less precise. This
is also reproduced in our theory.

For completeness, in Fig. 5 we present the results for the
conductivity. We see that s1�v� keeps increasing at small
v between Tins and Tc. This indicates that the develop-
ment of the pseudogap does not give rise to a suppression
of the conductivity at the lowest frequencies. The latter is
reduced only below Tc. To emphasize this point, we plot
s1�v� at a low v vs T . The change of behavior at Tc is
clearly visible. The sensitivity of s1�v � 0� to Tc rather
than to the pseudogap temperature is also consistent with
the data [16]. The low frequency behavior of s1�v � 0�
well below Tc is indeed not captured in our theory as it
is predominantly determined by impurities [17]. Finally,
we found both analytically and numerically that, at large
v, s1�v� again is sensitive to Tc rather than Tins (the last
panel in Fig. 5). This also agrees with the data [18].

To conclude, in this paper we considered the differential
sum rule for the effective scattering rate 1�t�v� [the dif-
ference between the area under 1�t�v� for two different
temperatures]. We argued that for spin-fluctuation media-
ted pairing, this sum rule is generally not an exact one, but
is rather well satisfied below Tc and is exhausted at fre-
quencies compared to the pairing gap, D. We identified
this behavior with the strong feedback from the pairing
on the fermionic self-energy. We found that in the pseu-
dogap region, where feedback effects are small, 1�t�v�
at v � O�D� is nearly homogeneously suppressed com-
pared to the normal state, and the differential sum rule is
not satisfied. We argued that this behavior as well as the
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FIG. 5. The behavior of s1�v� in the spin-fermion model be-
low the pseudogap temperature Tins for l � 1. The lower panels
show the behavior of s1�v� vs T at small and large frequencies
for l � 1. Observe that the changes in s1 are confined to Tc
rather than to Tins.

behavior of s1�v�, is consistent with the experimental data
for the cuprates.
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