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Flexible Ab Initio Boundary Conditions: Simulating Isolated Dislocations in bcc Mo and Ta
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We report the first ab initio density-functional study of the strain field and Peierls stress of isolated
�111� screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled
to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic
atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted
equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress
shows significant non-Schmid behavior as expected for the bcc metals.
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Plastic deformation in metals is mediated by the mo-
tion of line defects (dislocations) that produce a long-range
stress field. Many material properties (e.g., strength and
ductility) are directly related to the structure and mobil-
ity of dislocations. Continuum elasticity has been very
successful in describing these long-range fields. However,
close to the dislocation center (core) there are large lattice
distortions and the elastic solution diverges [1]. Atomistic
simulations demonstrate that local forces at the disloca-
tion core and their coupling to the applied stress can have
a dramatic effect on structural properties. Currently there
are few methods which can probe the electronic structure
which produces the forces at the dislocation core. Because
of this there is a poor understanding of the “chemistry of
deformation.”

In this Letter we report the first ab initio technique, the
first-principles Greens function boundary condition (FP-
GFBC) method, for self-consistently coupling the strain
field produced by a line defect to the long-range elastic
field of the host lattice. The problem is divided into two
parts: a robust solution for the nonlinear dislocation-core
region and a solution for the long-range elastic response.
Solving these individual problems is straightforward and
by iteratively coupling the two solutions we can efficiently
solve for the strain field in all space. A plane-wave pseudo-
potential method has been adapted to use this technique
and we have applied it to study a�2�111� screw dislo-
cations in the bcc transition metals. The objective is to
demonstrate an efficient electronic structure method for
predicting how the critical stress, required to move a dis-
location (Peierls stress), changes for different elemental
metals having the same crystal structure.

Physical and computational issues.—Modeling ex-
tended defects in metals requires a self-consistent coupling
of the defect center to the long-range elastic field. Edge or
screw dislocations produce a stress field which is propor-
tional to the inverse of the distance to the dislocation core
[1]. In conventional atomistic methods a surface is used
to accommodate the discontinuity in the lattice produced
by the Burgers vector (b), and a large buffer region (�104

atoms) is used to isolate the dislocation core from the
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surrounding static lattice. Simulation cells of this size are
beyond the scope of current electronic structure methods.

Alternatively, dislocation dipoles can be used to localize
the cut in the lattice produced by the dislocation. Several
groups have used reciprocal space methods to simulate ar-
rays of dislocation dipoles in order to minimize the effects
of the long-range stress field [2–4]. Unfortunately the dis-
location dipole array imposes an artificial symmetry which
is not necessarily consistent with the symmetry of the dis-
location core. Also, the bcc transition metals are expected
to have extended dislocation cores which are quite sensi-
tive to the image stresses produced by the boundary condi-
tions [5,6].

We describe an alternative ab initio method which is
designed to self-consistently couple the core region to the
long-range stress field. The FP-GFBC method is an adap-
tation of the lattice GFBC method which has been used
in atomistic calculations of two- and three-dimensional
dislocation structures in simple metals and ordered inter-
metallics [6,7]. In this method the dislocation core is
embedded in a lattice Greens Function region that pro-
duces a stress field consistent with the response function of
the bulk metal. These calculations show that dislocations
can be contained in very small simulation cells without
compromising the fidelity of the final core configuration.
In the first-principles implementation the lattice and elas-
tic Greens function are derived from reference electronic
structure calculations. The response functions are used
to optimize the ionic positions based on the Hellmann-
Feynman forces. The current application is an example of a
two-dimensional GFBC method; generalizing the method
for three-dimensional defect centers is straightforward.

Ab-initio method.—Calculations were performed using
the ab initio total energy and molecular-dynamics program
VASP (Vienna ab initio Simulation Package) developed
at the Institut für Theoretische Physik of the Technische
Universität Wien [8–11]. Ultrasoft Vanderbilt pseudo-
potentials [9,12] were used to approximate the electron-
ion interactions. We expand the wave functions in a
plane-wave basis, and bands near the Fermi surface are
partially occupied using finite temperature broadening
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(kBT � 0.1 eV). Calculations for Mo and Ta used energy
cutoffs of 233.1 and 218.5 eV with 4 and 8 special k
points, respectively. With these choices the total energies
are converged to within 0.01 eV�atom. Predicted lattice
and elastic constants (Table I) are consistent with previous
norm-conserving pseudopotential calculations and are
within expected error when compared to experimen-
tal measurements [13,14]. Small shear strains in the
�111� direction produce a shear stress proportional to G
[G � �C11 2 C12 1 C44��3]. The value of G found for
Ta is significantly more accurate than that found for C44
and errors in G of 15% are acceptable for this study.

Deriving the lattice Greens function.—To determine
the lattice Greens function we construct the elastic
Greens function based on the elastic constants for a given
pseudopotential and crystal structure (Table I) [6]. The
resulting elastic Greens function is used to define the dis-
placement field near an atom undergoing a test force along
each lattice direction (Fi � 0.1 eV�Å�. We construct a
supercell using the lattice vectors of the target simulation
(e.g., the dislocation coordinate system) and the predicted
displacement field. The atomic positions are then op-
timized using the VASP code which has been modified
to include the corresponding test force. The Hellmann-
Feynman forces are converged to less than 0.01 eV�Å.
We find that the final displacement field converges to the
elastic Greens function solution approximately 5 Å from
the atom undergoing a test force.

Evaluation of possible simulation cells.—We have ex-
plored several techniques for terminating an isolated dislo-
cation within the supercell. In both approaches the volume
containing material is divided into three distinct regions.
In the first approach a disk of material, with a thickness
of one periodic length along �111� (a

p
3�2), is used to en-

close the dislocation core. A vacuum region is then used
to isolate the dislocation from its periodic images in the
(111) plane (Fig. 1a). The second approach uses the same
dislocation-cell geometry; however, the vacuum region is
eliminated by extending region 3 to the boundaries of the
supercell (Fig. 1b). The supercell walls normal to the
�112̄� and �1̄10� directions form domain boundaries (DB).
Supercell size and geometry are chosen to minimize the
overlap of atomic charge densities in the DB while main-

TABLE I. Calculated and measured lattice parameters, bulk
modulus, and elastic molduli (Mbar) for bcc Mo and Ta [13].
Results under column labeled NC-PP are from earlier norm-
conserving pseudopotential calculations [14].

Mo Ta
Property VASP NC-PP Expt. VASP NC-PP Expt.

a (Å) 3.100 3.121 3.147 3.230 3.246 3.295
B 2.87 2.83 2.70 2.14 2.20 1.93
C11 5.04 4.70 4.79 2.91 3.04 2.66
C12 1.79 1.87 1.65 1.75 1.82 1.58
C44 0.920 1.01 1.08 0.53 0.66 0.88
G 1.39 1.28 1.41 0.56 0.62 0.65
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taining the correct lattice parameters and atomic density.
The charge dipoles produced in this region produce far
smaller perturbations in the charge density than a free sur-
face. By using DB the initial forces in the core region con-
verge to the accuracy of the electronic structure method
in two-thirds of the volume needed for calculations using
a vacuum region. Since the electronic structure method
scales with cell volume the computational effort is sig-
nificantly reduced by using simulation cells with domain
boundaries. Finally, the two methods converge to the same
result with increasing cell size. The limitations of employ-
ing a vacuum region will also be apparent in real-space
electronic structure calculations of line defects.

Applying the flexible boundary condition method.— In
the current implementation of the FP-GFBC method the
dislocation is centered within two concentric cylindrical
regions using the geometry illustrated in Fig. 1b. Region
3 is used to isolate the dislocation core from the DB re-
gion. The method proceeds as follows: (i) Initial atomic
positions are approximated by the anisotropic elastic
solution for the dislocation line [15]. (ii) The atomic po-
sitions within region 1 are optimized using the Hellmann-
Feynman forces generated from the electronic structure
method. This produces incompatibility forces for atoms in
region 2. (iii) These forces are relieved by displacing all
the atoms in the simulation cell according to the Greens
function solution:

um
i �

X

j,n
Gmn

ij �Rmn�fn
j , (1)

where the indices m, n denote atoms, the indices i, j denote
the Cartesian components, Rmn � Rn 2 Rm and fn

j are
the Hellmann-Feynman forces. (iv) Steps (ii) and (iii) are
repeated until the desired convergence is achieved. Step
(iv) is required because region 1 contains a line defect and
the Greens functions used in step (iii) are based on the
response of the perfect lattice. Also, optimization of the
atomic positions in steps (ii) and (iii) are applied in recip-
rocal and real space, respectively. This effectively isolates
the dislocation from the strain field of its periodic images.
Finally, we note that at each step the atoms are displaced
according to the Hellmann-Feynman forces produced by
the electronic structure method.
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FIG. 1. Schematics of possible geometries for the simulation
cells: (a) using a vacuum region and (b) using domain bound-
aries parallel to the dislocation line.
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The convergence of the forces using this procedure is
plotted in Fig. 2 for a cell of 270 Mo atoms containing a
screw dislocation. The average Hellmann-Feynman force
on atoms within each region is shown for the initial and
final positions of the atoms in step (ii) described above.
After the initial step all the forces are reduced at each
step in the iterative procedure until we reach the limits in
accuracy of the electronic structure method.

Core structure and convergence of cell size.—The
predicted dislocation-core structure for Mo is shown in
a (111) projection using differential displacement (DD)
maps (Fig. 3a) [16]. We find that the predicted DD for
Ta is nearly identical to that found for Mo. The arrow
centered between any two atoms is the relative �111�
displacement due to the presence of the dislocation. The
arrow lengths are scaled such that a displacement of b�3
produces a vector that connects nearest-neighbor atoms
in this projection. Figure 3b shows the equilibrium core
for Mo found by using advanced many-body atomistic
potentials based on modified generalized pseudopotential
theory (MGPT) [17,18]. The plot is representative of
previous atomistic studies which show the Mo core
spreading asymmetrically about a central point on the
three conjugate (110) planes [5,17] producing an ap-
proximate threefold rotational symmetry (C3). This is
in contrast to the current results, where the dislocation
core spreads evenly about a central point producing full
D3 symmetry. In order to rule out the C3 geometry
as a possible global-energy minimum we relaxed the
equilibrium atomistic core using the ab initio method. In
all cases the dislocation core relaxed to a core with full
D3 symmetry [19]. First-principles simulations of an
infinite array of dislocation quadrapoles produce a similar
equilibrium core structure for Mo [4].

Earlier atomistic studies have shown that variations in
core symmetry can be characterized quantitatively by cal-
culating the polarization [20]. The polarization is derived
from the atomic displacements in the core region and con-
verges rapidly with increasing cell size. In Mo we find
the polarization converged to within 8% of the asymptotic
value for cells with R2 � 12.1 Å (Fig. 1b). This will be
discussed in more detail in a later paper.
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FIG. 2. Convergence of the atomic forces using the FP-GFBC
method.
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Lattice friction stress.—The stress required to move a
screw dislocation is determined by applying pure shear
or uniaxial stress on simulation cells with R2 � 12.1 Å
(168 atoms). Plastic deformation in the bcc metals is quite
complex; slip can occur in any of the �111� directions
on a variety of slip planes. Also, these materials violate
Schmid’s law which states that glide on a given slip system
will occur when the resolved shear stress on that system
reaches a critical value (the Peierls stress).

Figure 4 shows the Peierls stress (i.e., the critical re-
solved shear stress) predicted for Mo and Ta as a function
of the angle (x) between the plane with the maximum
shear stress and the (110) plane. Similar results from
(MGPT) atomistic simulations are shown for comparison
[17,18]. We find good agreement between the methods for
pure shear stress on the (112) plane in the twinning sense
(x � 230). However, we find significant differences in
Ta for stress on the (110) plane (x � 0) and in both met-
als for pure shear on the (112) plane in the antitwinning
sense (x � 30). Experimental measurements of the
Peierls stress for pure shear are quite difficult. However,
in 1969, using a novel mounting jig, Guiu measured
critical stresses (t) for a pure shear stress in Mo at 77 K
and found t�x � 30��t�x � 230� . 1.5 [21]. Here the
ab initio results give a ratio of 1.8.

We find that in Mo the dislocation glides primarily on the
(110) plane with the maximum shear stress, while in Ta the
dislocation moves on alternating (110) planes to produce
an effective (211) slip plane. These results are generally
consistent with previous atomistic simulations [5,17,18].
However, contrary to previous results, we find that the
projected symmetry of the equilibrium dislocation core
(i.e., D3 or C3) is not strongly correlated with the preferred
primary slip plane. Schmid’s law implies that the Peierls
stress varies as 1� cosx for a (110) primary slip plane,
this dependence is illustrated in Fig. 4a as a solid line.
Both the current predictions and the MGPT results show
significant non-Schmid effects for pure shear. Also, we
predict a large tension-compression asymmetry (Fig. 4a)
for uniaxial stress applied along (010) and (011) in bcc
Mo. This non-Schmid behavior is observed experimentally
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FIG. 3. Differential displacement plots of an a�2�111� screw
dislocation in Mo predicted using (a) ab initio and (b) atomistic
methods [17].
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FIG. 4. Predicted Peierls stress in (a) Mo and (b) Ta as a
function of the angle (x) between the maximum resolved shear
stress plane and the (110) plane. The Peierls stress is in units of
the shear modulus in the �111� direction (G).

and is attributed to the effects of nonglide stress on the
dislocation core [5].

As noted in other studies the predicted Peierls stress is
a factor of 2 or 3 times greater than that observed in low
temperature experiments [4,17,18]. However, the critical
stress has been estimated using a highly idealized model
of slip, an infinite, straight dislocation moving over the
Peierls barrier. This predicted critical resolved shear stress
should be considered as an upper bound to the Peierls
stress. In general we expect that the material will yield
at lower stresses, even at low temperatures where kink
dynamics are reduced. The low temperature experimental
measurements may reflect the activation of new sources or
the unpinning of the small but finite population of mixed
and edge segments.

We find that the MGPT simulations underestimate the
Peierls stress in Ta and overestimate the Peierls stress in
Mo. This contradicts the recent assertions made by Ismail-
Beigi and Arias regarding the scale of the Peierls stress
produced by these atomistic potentials [4]. Our ab initio
results show that the Peierls barrier is large (compared
to the fcc metals), consistent with conventional models
of crystal plasticity in the bcc metals. These initial re-
sults suggest that properly constructed many-body atom-
istic potentials can capture some qualitative features of
plastic deformation in the bcc transition metals [5,17,18].
However, predicting differences between elemental metals
(e.g., Ta and Mo) will require improved interaction models
or ab initio methods such as the one described here.

A flexible boundary condition method has been used to
isolate a single dislocation in an ab initio supercell calcu-
lation. The method employs a lattice Greens function that
was derived using a simple well-defined procedure and a
widely available ab initio method. The atomic positions
within the supercell containing the dislocation were opti-
mized using an iterative scheme based on the Hellmann-
Feynman forces. The method converges rapidly with
increasing cell size and is relatively straightforward to
implement. The method was used to estimate the Peierls
stress for pure shear and uniaxial stress in two bcc transi-
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tion metals. Almost forty years ago Hirsch proposed that
nonplanar and extended dislocation cores were responsible
for the unusual plastic deformation observed in the bcc
transition metals [22]. This study is the first ab initio
confirmation of the origin of the non-Schmid behavior in
these materials.
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