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Universal Intermediate Phases of Dilute Electronic and Molecular Glasses
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Generic intermediate phases with anomalous properties exist over narrow composition ranges adjacent
to connectivity transitions. Analysis of both simple classical and complex quantum percolation shows
how topological concepts can be used to understand many mysterious properties of high temperature su-
perconductors, including the remarkably similar phase diagrams of La22xSrxCuO4 and C60

1y . Predictions
are made for novel threshold behavior of the impurity band metal-insulator transition in two dimensions.
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Superconductors are often found over a narrow range of
compositions adjacent to an insulator-metal phase transi-
tion (MIT) [1–3]. With a dopant density n one supposes
that the density of mobile charge carriers, n 2 nc1, tends
continuously to zero at the connectivity MIT, while the av-
erage spacing between these carriers becomes very large.
Whatever the screened interaction between mobile carriers
may be, their interactions should become weaker and thus
Tc should tend gradually to zero, which is the opposite of
the observed rapid collapse. In addition to the MIT there
is generally a second abrupt transition at larger n � nc2
from the intermediate superconductive phase, which has
anomalous transport properties even in the normal state, to
a normal metal (Fermi liquid) that is not superconductive,
much like a lighter alkali metal, as suggested by band the-
ory. The second transition is unexpected and is first order.

It seems that these two abrupt phase transitions can-
not be explained by the effective medium approximation
(EMA). The EMA is a high-density approximation that
neglects fluctuations and is intrinsically unsuitable in the
low-density limit near phase transitions where n 2 nc is
small, fluctuations are large [4,5], and screening lengths
are long. In this limit for attractive interactions the fluc-
tuations can become coherent, and they often belong to
a generic topological class here identified and explained
in the context of numerous examples, both quantum and
classical.

Phase transitions in the simplest disordered off-lattice
cases, partially quenched classical molecular systems, can-
not be treated analytically. In several low-density molecu-
lar cases fluctuations have been simulated numerically and
even studied experimentally in considerable detail. The
electronic quantum cases are still more difficult. They
cannot be simulated numerically [6], in agreement with
the comment [7] that “Some of the deepest problems in
physics still surround the dynamics of glasses.” The scaling
behavior of nearly randomly doped semiconductor MIT’s
has been measured [8] in the limit T ! 0. These new de-
velopments share several generic features, most notably an
intermediate phase with anomalous properties remarkably
similar to those observed in high temperature supercon-
ductors (HTSC).
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In the dilute limit with attractive interactions, super-
cooled liquids and glasses may behave quite differently
from crystals. In crystals the upper dimensionality where
mean-field theory (Gaussian fluctuations) becomes valid
is 2d in (r, p) classical models, and d 1 1 in (p, t) quan-
tum models. In lattice short-range spin glasses the resid-
ual (low excess entropy) bulk relaxation rate is described
by a stretched time exponential, with a stretching fraction
given by b � d���d� 1 2�; for higher dimensionalities,
b reaches an effective dimensionality d� � 1 for both d �
3 and d � 4 and is probably independent of d, as sample
size increases [9,10]. Thus at low densities attractive inter-
actions can lead to dimensional collapse. Note, however,
that because of poorly screened transverse Coulomb in-
teractions, the bulk physics of one-dimensional subspaces
embedded in d . 1 dimensions need not be the same as
that of isolated one-dimensional spaces. There are many
theoretical studies of strictly d � 1 models, but the inter-
mediate bulk phases discussed here are not obtainable in
these models.

In ordinary electrolytes, with repulsive solute-solute
ionic monopole interactions, liquid-gas phase transitions,
as well as phase separation, occur, much as in hard-sphere
fluids. With attractive dipolar interactions at high densities
there is the usual liquid-gas transition, the condensed state
having ferroelectric order. At low densities, however, there
is no liquid-gas transition; the dipoles simply form curvi-
linear head-to-tail chains [11] that are at least metastable
at low T . In dipolar solutions the EMA is valid for high
densities, but it does not predict the low-density dimension-
ally collapsed daisy chains. The topological correlations
associated with such chains determine dielectric over-
screening in the hydrogen bond network of H2O, according
to calculations of q-dependent dielectric functions [12].

Network glasses also contain many surprises in the
low-density limit. Here instead of the MIT one finds an
elastic stiffness transition [13] that has been studied with
considerable success both in numerical simulations [14]
and in experiment [15]. This transition is analogous to
the electronic MIT, and it occurs when the number of
bond-stretching and bond-bending Lagrangian constraints
per atom, Nc, equals d, the number of degrees of freedom
© 2002 The American Physical Society 216401-1



VOLUME 88, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 27 MAY 2002
per atom. Thus by low density of excess constraints
one means the difference ´ � �Nc 2 d��d ø 1; at such
densities one finds, in numerical simulations, bulk perco-
lating, curvilinear, rigid, topologically one-dimensional
d� � 1 backbones [14].

The most striking new discovery in glass science in many
decades has occurred in measurements of the kinetics of
the glass transition using modulated differential scanning
calorimetry [15]. These studies, which are supported by
extensive elasticity and microscopic Raman scattering
measurements, separate the enthalpy of the transition into
reversing and nonreversing parts. As functions of compo-
sition or ´, the experiments have identified a 0 , ´ , ´2
reversibility window, where the ratio of the nonreversing
to the reversing transition enthalpy has dropped by a
factor of 10 or more below typical values. This reduction
is caused by transverse medium-range vortex disentangle-
ment (absence of rings) in unstressed backbones, and it
identifies an intermediate phase associated with connected
network flexibility [14]. The width of the window, as well
as its shape, is easily understood in terms of local network
topologies specific to particular alloys [15]. Examples
shown in Fig. 1 include both broad and narrow windows,
the narrow one of width ´2 � 0.005.

Although the electronic quantum cases cannot be simu-
lated numerically, the topological similarities to the mo-
lecular cases just discussed are pervasive and instructive.
Phase transitions in semiconductor impurity bands can be
used as a benchmark to test all proposed theories of the
MIT in HTSC. The nature of the impurity band transitions
is easily identified and characterized in 3d samples where
the impurities are nearly randomly distributed. The scal-
ing exponent a for the conductivity s [s ~ �n 2 nc1�a]
in the limit T ! 0 provides evidence for the formation of

FIG. 1. The reversibility window in the enthalpy of the glass
transition near the ´ � �Nc 2 d��d � 0 stiffness transition in
network glasses. When the network stiffness is dominated by
dead ends (disordered onefold coordinated I atoms [15]), the
window is narrow and sharp. In SixSe12x linear chains are
dominant, and then the window edges are still sharp, but the
window is at least 20 times wider [15]. The two marked critical
points for the wide window were determined independently from
Raman scattering.
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one-dimensional coherent filamentary paths. With a classi-
cal random resistor model, one obtains a � 1. Quantum
mechanically, with a constant scattering rate, one obtains
a � d�2. In the EMA one would have d � 3 or a � 1.5.
The observed value [8] is a � 0.50�1�, corresponding
to a much sharper transition; the EMA with d � 3 and
plane-wave basis functions has clearly failed. There are
several explanations [16] for a � 1�2; one of them is that
d � d� � 1, or discrete one-dimensional filaments. An-
other is based on a continuum best path through dynamical
Gaussian noise; it gives a � 2��d 1 1�. Finally, there is
a third possibility, that a filamentary metal really corre-
sponds to a tunneling phase, in which the filaments follow
paths defined by dopants that produce below band-edge
potential tunneling canyons. Many experiments on tun-
neling have found that coherent currents in such cases are
proportional to the quasiparticle density of states N�E�,
not to the total number of carriers, especially in super-
conductive tunneling. With N�E� � E�d22��2, this gives
a � �d 2 2��2 � 1�2 for d � 3.

It may seem bewildering that at least three microscopic
models can be constructed for a�d�, yet all three give
a � 1�2 for d � 3. These models can be distinguished
easily by making measurements for d � 2, in other words,
in a thin film or (multi-)quantum well geometry, with the
well thickness of order the impurity Bohr radius. My fa-
vorite, the one-dimensional filament, still gives a�2� �
1�2, the best dynamical continuum path Gaussian noise
gives a�2� � 2�3, and the coherent tunneling model gives
a�2� � 0 (step function). With samples prepared by neu-
tron transmutation doping [8], it should be easy to distin-
guish these three cases.

The embedded discrete one-dimensional filamentary
model readily explains [16] the wholly unexpected second
transition, from the intermediate phase to the Fermi liquid,
which is observed in specific heat data on Si:P. This
transition is first order, and it occurs when the transverse
confinement energy of the filaments becomes too large, so
that lower energy is achieved by reverting to the locally
isotropic d � 3 Fermi liquid; this occurs when the mobile
dopant density n 2 nc1 becomes too high. Similarly, in
network glasses, when the density ´ of excess constraints
becomes too high, the network is entangled [14] and the
normal nonreversibility of the glass transition is restored.
In impurity bands the second “crowding” transition occurs
around nc2 � 2nc1. The rings that stress the backbone
of the network glass turn into branched filaments in the
electronic case. Branching causes the local electronic one-
dimensional filamentary wave packet phase variable to
lose its meaning, and one reverts to the incoherent EMA.
There the random phase approximation is often useful,
because there are no separate phase variables as there are
no isolated subspaces.

To understand the phase diagrams of HTSC one must
allow for several additional factors that are specific to per-
ovskite and pseudoperovskite oxides. All these materials
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are ferroelastic and consequently are subject to large inter-
nal stresses that lead [17] to formation of orthorhombic (or
other low symmetry) domains with dimensions of order
3 nm or less. In most cuprates the electrically active dop-
ants are oxygen atoms or vacancies, and these have high
mobilities. As a result, a new and very favorable mecha-
nism develops that aids the formation of one-dimensional
filaments: the dopants, which are disordered at high tem-
peratures, can diffuse to form metallic chains, very similar
to classical dipolar daisy chains. These metallic chains
are embedded in an otherwise semiconductive environ-
ment, with semiconductive barriers (or pseudogaps) lo-
cated in the nanodomain walls. Such chains will have very
high conductivities even in the normal state, as the trans-
verse ground state is nondegenerate. (For the same reason,
photons propagating in optical fibers have little attenua-
tion.) The formation of such metallic chains maximizes
the sample conductivity and leads to better screening of
fluctuating ionic (internal) electric fields. This improved
screening lowers the total energy, even at high annealing
temperatures, where oxygen mobilities are high. Thus the
dopants’ preferred and kinetically accessible configuration
(lowest free energy) is filamentary. The flexible zigzag
structure can be said to be topologically self-organizing;
by contrast, the presence of long-range order, detectable
by diffraction (stripes), suppresses both the filamentary
intermediate phase and HTSC.

Such flexible self-organization has many consequences.
The electronic resistivity and Hall numbers in the normal
state become linear in T above the pseudogap temperature,
as suggested long ago [18], because the zigzag filamentary
states form a narrow dopant band of high mobility states
with nonperturbatively reordered energies pinned to EF .
To avoid planar nanodomain walls, the filaments usually
funnel carriers through resonant tunneling centers in the
semiconductive planes that alternate with cuprate or other
metallic planes. At such resonant tunneling centers the
electron-phonon interactions become very large, due to
reduced screening. (In the Si:P impurity band case an
enhancement factor of 25 is obtained experimentally from
the specific heat [16].) This resolves the paradox stated
at the beginning of this Letter: by concentrating the few
carriers in even fewer filaments, not only do we avoid
having diluted weak interactions, but because of poor
transverse screening at resonant tunneling centers, the
funneled interactions are concentrated and thus greatly
enhanced, accounting for the high values observed for Tc

in the cuprates.
The percolative model enables us to understand nano-

scale phase separation, as shown [19,20] for LSCO (La22x-
SrxCuO4) in Fig. 2. The two phase transitions seen
explicitly in the electronic filling factor f�x� are coupled
to internal strains in the host lattice. The overall com-
position scale is expanded for Tc�x� because of partially
quenched phase overlap. The two phase transitions of the
filling factor f�x� become two phase immiscibility domes
216401-3
FIG. 2. Percolative interpretation [19] of data on the filling fac-
tor f�x�, measured by Meissner volume and specific heat jump
DCp�x�, and Tc�x� in La22xSrxCuO4. Two phase transitions in
f�x� are reflected in two spinodal immiscibility domes in Tc�x�,
indicated by the dotted lines. The data for Tc�x� were compiled
from many sources [20] and exclude effects of the 1�8 non-
superconductive stripe phase.

in Tc�x�, identified by the two pairs of sharp breaks in
slope of Tc�x� as it crosses spinodal boundaries.

Sharp breaks in slope are also visible (see Fig. 3) in the
phase diagrams [2] of disordered C60

1y films, and these
carry over to lattice-expanded C60

1y�CH�Cl, Br�3. Al-
though Tmax

c changes by more than a factor of 2 due to
lattice expansion, the electronic spinodal regions of all
three C60-based phase diagrams closely resemble the
phase diagram of underdoped and optimally doped LSCO,
with y11 � 1.7 and y12 � 2.2 holes�C60. [Note that
the linear spinodal regions all extrapolate to Tc � 0 at
y10 � 1.55�2�, which should define the first MIT (without
“tails”).] Chains of Jahn-Teller deformed C60

1z (z
integral) will have lower energies and greatly enlarged

FIG. 3. Percolative interpretation [19,22] of data on Tc� y� for
C60

1y from Ref. [2]. The breaks in slope are associated with the
dashed lines of two immiscibility domes, which reflect strong
electron-phonon interactions, just as in Fig. 2.
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e-p interactions due to enhanced screening of charge fluc-
tuations that occur in space-filling C60

1w (w integral # z)
host molecules transverse to the C60

1z chains [19]. Sphe-
roidal Bucky ball C60 is deformed into a prolate ellipsoidal
C60

1z , leading to larger intermolecular overlap in the
aligned C60

1z chains. These factors increase Tc in C60
1z

compared to C60
2y and suggest that e-p interactions,

enhanced by dopant chain formation, are the cause of
HTSC in both fullerites and cuprates. Moreover, the
unexpected universality of ymax � 3 [Tmax

c � Tc� ymax�]
between threefold orbitally degenerate electrons and five-
fold orbitally degenerate holes, for both chemically doped
and field-doped samples [2], is an automatic consequence
of filamentary topology and Bucky ball deformation,
as is the almost exact similarity between fullerene and
�Ca, Sr�CuO2 phase diagrams [21,22].

This discussion has emphasized the phase diagrams of
HTSC because these exhibit the largest degree of self-
organization, and the most detailed anomalies. Disordered
metal films with much lower Tc’s, such as (Si,Au), exhibit
similar, but less detailed, correlations [3] between super-
conductivity and the MIT. The connections between the
MIT, generic chain-based intermediate phases and the
many anomalies observed in HTSC, both cuprate and
fullerene, have close topological parallels in more easily
understood chain systems with much simpler internal
chemistry. A discrete topological approach, rather than
the continuum EMA, is likely to provide the most suc-
cessful platform for understanding these mysterious mate-
rials [23].
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