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Reconnection and the Ideal Evolution of Magnetic Fields
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A magnetic evolution is ideal if it is consistent with the field being embedded in a perfectly conducting
fluid. Faraday’s law implies the evolution is ideal when the parallel component of the electric field
is the derivative of a scalar potential, a condition that generically holds in any local region of space.
Reconnection requires the non-existence of such a potential. In systems with two periodic directions, non-
existence focuses reconnection onto the surfaces in which the magnetic field lines close on themselves,
the rational surfaces. This rational surface effect does not arise in astrophysics but does appear in periodic
simulation codes. Effects that could give astrophysical reconnection are discussed.

DOI: 10.1103/PhysRevLett.88.215005 PACS numbers: 52.30.–q, 52.35.Vd
I. Introduction.—The evolution of a magnetic field
�B� �x, t� is called ideal if ≠ �B�≠t � �= 3 � �u 3 �B�. This is
the evolution equation for a magnetic field embedded in
a perfectly conducting fluid moving with velocity �u� �x, t�.
We will show that a generic magnetic evolution always ap-
pears ideal in a local region of space. The velocity �u has the
interpretation of being the velocity of the magnetic field
lines, Sec. III.

Faraday’s law, ≠ �B�≠t � 2 �= 3 �E, provides one rela-
tion between an evolving magnetic field and an electric
field. The properties of the medium in which the magnetic
field is embedded provide a second. The second relation is
often far more complicated than the conventional Ohm’s
law, �E 1 �y 3 �B �

h

m0

�= 3 �B with �y the velocity of the
medium and h its resistivity. The velocity the field lines
�u is in general distinct from the velocity of the medium
�y, Sec. IV. Regardless of the complexities of the actual
medium in which a magnetic field is embedded, the evo-
lution of that magnetic field is consistent with its being
embedded in an ideal fluid, a fluid with h � 0?

A given magnetic evolution determines through Fara-
day’s law the electric field up to an arbitrary gradient.
From this we will show that the evolution of a magnetic
field appears ideal in any region of space for which a func-
tion F��x, t� exists that satisfies the magnetic differential
equation [1] �B ? �=F � 2 �E ? �B. The electric field is de-
termined by the physics of the medium in which the mag-
netic field is embedded. The most important solvability
constraint [2,3] on the equation for F� �x, t� is that the loop
integral of the electric field along any closed magnetic field
line vanishes,

H �E ? d �� � 0. If this constraint is not sat-
isfied, F��x, t� becomes multivalued, which means it is not
a proper function of position. However, we will show that
for a generic magnetic field, a solution F always exists in
a sufficiently local region of space.

Fast reconnection [4] is a nonideal evolution of a mag-
netic field in which the nonideal behavior is concentrated
in thin layers. Fast reconnection (usually called just recon-
nection) is considered an extremely important phenomenon
in laboratory and space plasmas. Fast reconnection can
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easily be observed in a computer code with two periodic
directions [5–7] or in a geometric torus, such as a toroidal
device for magnetic fusion. In either case, the solvability
constraint

H �E ? d �� � 0 focuses reconnection on the sur-
faces on which the magnetic field lines close on themselves
when periodically extended, Sec. III. In toroidal geometry
these surfaces are called rational magnetic surfaces.

In space and astrophysics, magnetic field lines rarely
close on themselves, so the localization of nonideal mag-
netic behavior by the failure of the solvability constraintH �E ? d �� � 0 on closed field lines is an unlikely explana-
tion for fast reconnection. The reconnection phenomena
observed in computer codes that have periodic boundary
conditions in two directions apparently have little to do
with the reconnection observed space and astrophysical
systems. In Sec. V phenomena that can give reconnec-
tionlike behavior in space or astrophysical plasmas are
discussed.

The model of the medium in which the magnetic field is
embedded can fundamentally change the properties of non-
ideal magnetic evolution, like fast reconnection [5]. Nev-
ertheless, a number of properties of magnetic evolution can
be obtained from Faraday’s law alone. These properties,
which are the focus of this paper, are model independent
and are, therefore, of particular importance.

II. Demonstration.—Faraday’s law, ≠ �B�≠t � 2 �= 3 �E,
determines the electric field associated with an evolving
magnetic field �B��x, t� to within an additive gradient,
�=F��x, t�. The Ohm’s law for a perfectly conducting fluid
flowing with a velocity �u is usually given as �E 1 �u 3
�B � 0. However, because of the arbitrary additive gra-
dient, the evolution is consistent with the magnetic field
being embedded in a perfectly conducting fluid if

�E 1 �u 3 �B � 2 �=F . (1)

Equation (1) is a much weaker condition for an ideal
evolution than �E 1 �u 3 �B � 0 that was used, for ex-
ample, in the seminal work [8] of Lau and Finn on recon-
nection and magnetic nulls. They considered an electric
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potential but assumed that it had to satisfy the constraint
�B ? �=F � 0.

The paradox of a generic magnetic evolution appearing
ideal is demonstrated by showing that an arbitrary vector
field �E��x, t� can be locally written in the form of Eq. (1).
If the magnetic field has no nulls, which means j �Bj is
nonzero, the potential F can be chosen so the component
of Eq. (1) along the magnetic field is locally satisfied for an
arbitrary �E��x, t�. The required equation for the potential is

�B ? �=F � 2 �E ? �B . (2)

This differential equation for F is always locally solvable
if j �Bj is nonzero. If j �Bj is nonzero, the flow velocity �u
can balance the components of �E��x, t� perpendicular to the
magnetic field in Eq. (1). The required flow perpendicular
to the magnetic field is

�u� �
� �E 1 �=F� 3 �B

B2
. (3)

The parallel flow is arbitrary.
At a magnetic null Eqs. (2) and (3) appear singular.

However, near a generic null of a magnetic field, these
equations are nonsingular, and the evolution can be viewed
as ideal. The evolution near a magnetic null is locally ideal
if the flow �u can be chosen so �= 3 � �E 1 �u 3 �B� � 0 with
�= 3 �E � 2≠ �B�≠t. An identity of vector calculus is

�= 3 � �u 3 �B� � �u �= ? �B 2 �B �= ? �u 1 �B ? �=�u 2 �u ? �= �B .
(4)

Consequently, near a magnetic null at �x � �x0�t�, the evo-
lution is ideal if a flow �u can be found such that

�u ? �= �B � 2

µ
≠ �B
≠t

∂
�x0

. (5)

Near the null the magnetic field has the form �B �
$
B ?

��x 2 �x0�t��. The tensor
$
B has two properties. (i)

$
B has no

trace, because the divergence of the magnetic field is zero.
(ii)

$
B is symmetric or not depending on whether the mag-

netic field is curl-free. However, for a generic null the ten-
sor

$
B can satisfy no other conditions such as having a zero

determinant, j
$
Bj. The reason is that a zero of the mag-

netic field requires Bx�x, y, z� � 0, By�x, y, z� � 0, and
Bz�x, y, z� � 0, which is three equations with three un-
knowns �x, y, z�. An additional condition, such as j

$
Bj �

0, would be four conditions on three unknowns. At a mag-
netic null, Eq. (5) is

$
B ? �u � 2≠ �B�≠t. This matrix equa-

tion can be solved for �u when the tensor
$
B has a nonzero

determinant, and the solution is �u � d �x0�dt. If the de-
terminant j

$
Bj is nonzero, one can show that the field is

zero only at a point, not along a curve, and that a small
perturbation can move, but cannot remove, the null of the
magnetic field.

For a point null, j
$
Bj nonzero, Eq. (2) for F and Eq. (3)

for �u� are nonsingular at the null. Equation (2) requires
� �=F��x0 � 2 �E��x0�, which implies �E 1 �=F �

$
E ? ��x 2
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�x0� near the null. Inserting this form into Eq. (3), one finds
that both the numerator and denominator of the equation
for �u� depend quadratically on the distance from the null.
Since B2 is nonzero in all directions away from a point
null, the expression for �u� is nonsingular in the limit as
�x ! �x0.

In some theoretical examples of reconnection, the mag-
netic field is orthogonal to a symmetry direction. In such
cases, a magnetic null is a null along a line in the symmetry
direction. However, an arbitrarily small perturbation can
change such a magnetic field into a field that is zero only at
separated points. Consequently, the case of a null along a
line is not generic and presumably has little physical rele-
vance. It should be noted that in the four coordinates of
space-time, �x, y, z, t�, nulls can occur at isolated points
of all three components of the magnetic field plus the de-
terminant j

$
Bj. These isolated space-time points are the

places where magnetic nulls can appear or disappear.
III. Interpretation of �u.—As we have seen, the generic

evolution of a magnetic field is at least locally consistent
with the magnetic field being embedded in a perfectly con-
ducting fluid flowing with a velocity �u. What is the inter-
pretation of the flow velocity �u when the magnetic field is
embedded in a resistive or insulating medium? The veloc-
ity �u can be interpreted as the flow of the field lines. More
precisely, it is the velocity of a set of coordinates that is
defined by the magnetic field.

Let u and w be any pair of coordinates; then an arbi-
trary vector can be written as �A � ct

�=u 2 cp
�=w 1 �=g,

which implies any magnetic field can be written in the
form [3]

�B � �=ct 3 �=u 1 �=w 3 �=cp . (6)

If �B ? �=w � � �=ct 3 �=u� ? �=w fi 0, the quantities
�ct , u, w� have a finite Jacobian and can be used as
coordinates. This coordinate system is defined by
�x�ct, u, w, t�, which gives positions in space as a function
of �ct , u, w� and time.

The magnetic field line trajectories in �ct, u, w� coor-
dinates are given by Hamilton’s equations of motion with
cp�ct , u, w, t� the Hamiltonian [3],

du

dw
�

≠cp

≠ct
and

dct

dw
� 2

≠cp

≠u
. (7)

The velocity of the �ct , u, w� coordinates is

�u �
≠�x�ct, u, w, t�

≠t
. (8)

The electric field is related to the vector and scalar po-
tentials by �E � 2≠ �A�≠t 2 �=F�x . This equation can be
rewritten in �ct , u, w� coordinates in the form [3,9]

�E 1 �u 3 �B �

µ
≠cp

≠t

∂
ct ,u,w

�=w 2 �=F . (9)

If ≠cp�≠t � 0, the magnetic field lines can distort, but no
topology change can occur. This is equivalent to saying
that the motion of �ct, u, w� coordinates can absorb the
215005-2
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evolution of the field if a �u � ≠�x�≠t and a F can be found
with �E 1 �u 3 �B � 2 �=F. This equation has the same
form as Eq. (1) but a subtly different interpretation.

Nonideal magnetic behavior, or reconnection, requires
that ≠cp�≠t be nonzero. If a solution for F exists to
�B ? �=F � 2 �E ? �B with a nonsingular field line flow �u,
then there is no reconnection.

A doubly periodic system, �x�ct, u 1 1, w� �
�x�ct ,u, w 1 1� � �x�ct, u, w�, in which the magnetic
field lines locally lie on constant ct surfaces, �B ? �=ct � 0,
clarifies what is meant by nonideal behavior and recon-
nection. In such a system a u coordinate exists that has
the property that cp depends on only ct and t. These
�ct , u, w� coordinates are the action-angle variables of
Hamiltonian mechanics, with w the canonical time, or
the magnetic coordinates of plasma physics [3,10]. In
these coordinates, the equation �B ? �=F � 2 �E ? �B can be
solved essentially analytically for F. To do this, Fourier
expand the parallel electric field,

�E ? �B
�B ? �=w

�
X
m,n

Vmn�ct�ei2p�nw2mu�, (10)

then the Fourier coefficients of F are

Fmn�ct� �
i

2p

Vmn�ct�
n 2 i�ct�m

. (11)

The rotational transform i�ct� � dcp�dct. Resonant
Fourier components of F have a singular form on ro-
tational surfaces on which the rotational transform is
the ratio of two integers, i � N�M. On such surfaces,
magnetic field lines close on themselves after being
extended M periods of the w coordinate and N periods
of the u coordinate. If the electric and magnetic fields
are well-behaved functions of position, F is also well
behaved except on the surfaces in which the field lines
close on themselves, the rational surfaces. Near the
rational surfaces, the singularities of F cause a singular
flow for the magnetic field lines. Ignoring the spatial
variation of the magnetic field, �B ? �= 3 �u � 2=

2
�F with

the perpendicular sign meaning perpendicular to the field
lines. This singularity of the flow of the field lines is what
causes the failure of the ideal evolution of a magnetic field
near rational magnetic surfaces. The existence of rational
surfaces naturally leads to a breaking of the ideal evolution
of a magnetic field in thin layers and to fast reconnection.

In systems in which the magnetic field lines do not lie
in doubly periodic surfaces, which presumably includes
all astrophysical systems, singularities in the field line flow
cannot be caused by rational surfaces. Other ways exist for
a singular flow of the magnetic field lines to arise, Sec. V,
and must be the cause of reconnection in astrophysical
systems. In addition to fast reconnection, which is focused
on rational surfaces, doubly periodic systems can also have
a slow reconnection phenomenon. This arises when the
zero-zero Fourier term of the Vmn series is nonzero. This
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zero-zero term is called the loop voltage

V00�ct , t� �
≠

≠ct

Z
�E ? �B d3x . (12)

However, in this evolution the magnetic field lines remain
on nested toroidal surfaces. In other words, the topology of
the surfaces on which field lines lie remains fixed. Indeed,
in a region in which the loop voltage is a spatial constant,
the magnetic field is independent of time. In tokamak
literature, this is an Ohmic steady state in which a constant
magnetic field is maintained against slow resistive decay
by a transformer induced loop voltage.

Boundary conditions on rigid perfectly conducting sur-
faces can cause reconnection. A rigid perfectly conduct-
ing surface is defined by making the electric field zero,
�E � 0, and the flow velocity of the field lines zero, �u � 0,
on the surface, which implies, Eq. (1), the potential F

is constant on the surface. On field lines that leave and
reenter a rigid perfect conductor, the potential F must sat-
isfy boundary conditions at both ends, which are gener-
ally inconsistent with the existence of a global solution to
�B ? �=F � 2 �E ? �B. The reconnection implied by this fail-
ure of global solvability is often of the slow variety, which
means without singular layers. Effects that can lead to sin-
gular layers and fast reconnection are discussed in Sec. V.

IV. Consistency with Ohm’s law.— If an evolving mag-
netic field is embedded in a resistive fluid, how can the evo-
lution of the field appear ideal? The most familiar model
of a resistive fluid uses the Ohm’s law �E 1 �y 3 �B � h �j.
The most general expression for the electric field that is
consistent with an ideal evolution for the magnetic field is
�E 1 �u 3 �B � 2 �=F. These two expressions for the elec-
tric field imply a magnetic evolution is ideal if and only if
� �y 2 �u� 3 �B � h�j 2 �=F. This condition is satisfied if
a function F� �x, t� exists with �B ? �=F � h �j ? �B. The ar-
gument given in Sec. III implies this is true for any generic
magnetic field in a sufficiently local region of space. The
velocity �y 2 �u is the velocity of the resistive fluid relative
to the magnetic field lines. In other words, the evolution
of a magnetic field may be ideal even when the evolution
of the fluid in which it is embedded is dissipative. An ob-
vious example is a plasma that is maintained in a steady
state by sources of particle and energy as the plasma dif-
fuses across the toroidal magnetic surfaces of a stellarator
with no transformer. In this case the magnetic field is sta-
tionary, �u � 0 and ≠cp�≠t � 0. If a magnetic field is
embedded in a conducting fluid, then the ideal evolution
of the field is a much easier condition to satisfy than is the
ideal evolution of the fluid.

The equation for the electric field in a plasma is far more
complicated than in a simple resistive fluid. However,
the basic condition for an ideal evolution of an embedded
magnetic field is similar. The force balance equation for
each species of charged particles in a plasma can be written
in the form

�E 1 �ys 3 �B � �Rs . (13)
215005-3
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The velocity of the species is �ys, the sum of the forces
on the species due to inertia, pressure, and dissipation
is qsns

�Rs, and the charge density is qsns. A corollary
to Eq. (13) is �Rs ? �B � �E ? �B, which implies �Rs ? �B is
the same for all species. If �Rs ? �B � �B ? �=w��x� for any
species, the magnetic evolution is ideal.

Even when the magnetic field evolution is ideal, the
various species can cross the magnetic field lines with each
species having its own velocity. Equations (1), (13), and
�Rs ? �B � �B ? �=w��x� imply

�Rs � � �ys 2 �u� 3 �B 1 �=w , (14)

which implies species s flows across the magnetic field
lines at the velocity

� �ys 2 �u�� �
� �Rs 2 �=w� 3 �B

B2
. (15)

In other words, the tying of the magnetic field to any
plasma species is a much easier constraint to break than is
the constraint of an ideal evolution for the magnetic field
itself. The breaking of the tying of the ions to the mag-
netic field by ideal inertial effects allows reconnection to
proceed more rapidly in a plasma than in a simple resistive
fluid. This has been the subject of much recent work and
the topic of a recent tutorial paper [5].

V. Conclusion.—The generic evolution of a magnetic
field is locally an ideal evolution, which means the flow
is consistent with the field being embedded in a perfectly
conducting fluid flowing with a velocity �u. If the mag-
netic field is actually embedded in a nonideal or insulating
medium, then the velocity �u is the flow of a coordinate
system in which the magnetic field lines preserve their
topology provided a well-behaved function, F� �x, t�, exists
that satisfies the differential equation �B ? �=F � 2 �E ? �B.
The fundamental requirement for reconnection of magnetic
field lines is that there is no such function. In systems
with two periodicity directions, this requirement focuses
the reconnection into thin layers around the rational sur-
faces where the field lines close on themselves when pe-
riodically extended. The applicability of computer codes
that have two periodic directions to space and astrophysi-
cal plasmas is at best obscure. Since a generic magnetic
field can have only isolated nulls, models that have a null
of the magnetic field at each point along a curve, such as
a symmetric reconnection without a guide field, must have
little relevance to the evolution of naturally occurring mag-
netic fields.

In space and astrophysical plasmas reconnectionlike
phenomena can occur for at least four reasons that have
nothing to do with closed magnetic field lines. Two of the
four types of phenomena involve nonideal magnetic ef-
fects. (i) Each field line that enters and leaves a volume of
interest has length L that is parametrized by its entry point.
Discontinuities in F� �x, t� can be produced if the lengths of
field lines in an open system have discontinuities and may
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be responsible for focusing reconnection into thin layers.
(ii) Given an arbitrary magnetic field �B� �x�, the separation
d of neighboring field lines (d ! 0) will typically increase
exponentially, d � d0 exp�K�� with 1�K called Lyapunov
length and � the distance along a field line. [Typical
Hamiltonians have an exponential separation of trajec-
tories, and magnetic field lines are the trajectories of a
Hamiltonian, Eq. (7).] The exponential separation of field
lines coupled with the equation ≠F�≠� � 2 �E ? �B�B for
the potential implies j �=Fj ~ exp�K��. The exponentially
large currents required to drive the flows associated with
�=F 3 �B can break the constraint of an ideal evolution
when K� ¿ 1. Two other phenomena may look like
reconnection, but the magnetic evolution can be ideal.
(iii) Loss of equilibrium and instabilities driven by the
currents that are required to maintain the magnetic field
are well known phenomena in an ideal plasma model. The
energy that can be released by these phenomena can be
a significant fraction of the energy in the field produced
by the plasma current. Typically the energy goes into the
kinetic energy of the plasma, which means accelerating
the plasma to speeds that are a fraction of the Alfvén
speed. Because of their mass, most of this kinetic energy
is in the ions. (iv) An ideal magnetic evolution often
leads to a high current density along the magnetic field
lines. If the current density is greater than a critical value,
which depends on the electron temperature and number
density jD � en

p
Te�me, the electric field will exceed

the Dreicer electric field [11]. The electron distribution
will then form a high energy, or runaway tail, which could
produce phenomena that resemble the electron heating
expected from reconnection.
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