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Reynolds Number Dependence of Streamwise Velocity Spectra in Turbulent Pipe Flow
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Spectra of the streamwise velocity component in fully developed turbulent pipe flow are presented for
Reynolds numbers up to 5.7 X 10°. Even at the highest Reynolds number, streamwise velocity spectra
exhibit incomplete similarity only: while spectra collapse with both classical inner and outer scaling for
limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as
complete, and a region varying with the inverse of the streamwise wave number, k;, is not expected,
and any apparent k; ! range does not attract any special significance and does not involve a universal

constant. Reasons for this are suggested.
DOI: 10.1103/PhysRevLett.88.214501

Reynolds number similarity is an essential concept in
describing the fundamental properties of turbulent wall-
bounded flow. Unlike the drag coefficient for bluff bodies,
that for a turbulent boundary layer continues to decrease
with increasing Reynolds number because the small-scale
motion near the surface is directly affected by viscosity at
any Reynolds number. Therefore Reynolds number simi-
larity is very important in design and is a vital tool for the
engineer, who, plied with information from either direct
numerical simulations or wind-tunnel tests (or both), may
well have to extrapolate over several orders of magnitude
in order to estimate quantities such as drag at engineer-
ing or even meteorological Reynolds numbers. Perhaps
the most well-known example of Reynolds number simi-
larity is the region of log velocity variation (the log law)
found in wall-bounded flows which, at sufficiently high
Reynolds numbers, exists regardless of the nature of the
surface boundary condition or the form of the outer im-
posed length scale. The log law may be derived by an
overlap argument, where the overlap is said to occur be-
tween a near-wall region described by “wall” variables,
that is, a velocity scale u, and a length scale v/u, (the
superscript “+” denotes nondimensionalization with wall
variables), and an outer layer that depends on “outer” vari-
ables, that is, a velocity scale u, and a length scale that is,
for pipe flow, the radius R. Here, u, = /7,,/p, 7, is the
wall shear stress, p is the density, and v is the kinematic
viscosity [1].

For turbulence at sufficiently large distances from the
wall, Kolmogorov’s famous theories express the most im-
portant way in which Reynolds number similarity is used
[2]. Yet, of increasing importance is whether or not the
large scales also exhibit Reynolds number similarity when
suitably scaled. In the context of wall-bounded turbu-
lent flow, there is growing interest in using these ideas
to develop subgrid models and boundary conditions for
large-eddy simulations (LES). In LES, only the large
scales are resolved so that in the near-wall region where all
the eddies are “small,” there is a need to model not only
the energy drain from the resolved scales but also to pro-
vide an “off-the-surface” condition for the simulation. In
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this context, self-similarity could be very useful. However,
turbulence at any point consists of a range of scales so that
simple similarity may exist only under a restrictive range
of conditions. The situation is complicated by the fact that
wall turbulence is highly anisotropic, owing to the different
effects of the viscous constraint (the “no-slip” condition)
and the impermeability constraint. The latter leads to a re-
duction in the wall-normal (v) component at a streamwise
wave number, ki, that is roughly inversely proportional to
the distance from the wall, y. The effect of this “block-
ing” or “splatting” is to increase the wall-parallel (# and
w) components down to the viscous dominated sublayer.
This leads to the expectation that the spectrum for the v
component at low wave numbers depends only on y, while
spectra for the u and w components depend on both y and
an outer length scale such as R. Here we concentrate on
the behavior of the one-dimensional velocity spectrum for
the streamwise velocity component, ¢ (k).

A particularly useful concept that explains much of the
foregoing is Townsend’s theory concerning “active” and
“inactive” motion [3]. The active motion comprises the
shear-stress (puwv) bearing motion which therefore scales
on y and u, only. On the other hand, the inactive mo-
tion is of large scale, does not bear any significant shear
stress and, to first order, resides only in the ¥ and w com-
ponents. Townsend [4,5] described the inactive motion as
a “meandering or swirling” motion that contributes “to the
Reynolds [shear] stress much further from the wall than
the point of observation,” but not, as noted in [6] “at the
point of observation.” Intrinsic to the concept of active mo-
tion are “attached wall eddies,” which are “in some sense
are attached to the wall” and are therefore governed by u.
Moreover, they “have diameters proportional to distance of
their ‘centres’ from the wall” and therefore have properties
determined by the length scale y. If it is supposed that the
population of wall eddies is dominated by such structures,
then simple similarity may exist.

The purpose of this Letter is to report important new
measurements over a very large Reynolds number range in
fully developed pipe flow. The data at very high Reynolds
numbers are of special interest for scaling arguments at
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low wave numbers since the viscous length scale may be
assumed to be insignificant. Of particular note is that the
measurements do not provide convincing support of the
widely held notion that there exists a range of stream-
wise wave numbers, k;, in which ¢ scales as ki 1, SO
exhibiting self-similarity. Yet evidence to the contrary
abounds in laboratory data (with the usual restrictions in
Reynolds number—a limitation to which the present data
are not subject), both for fully developed pipe flow [7,8]
and boundary layers [9,10]. Literature reporting observa-
tions in the atmospheric surface layer, a field to which the
present results are particularly relevant, yields similar con-
clusions [11]. Here, we suggest that this result is actually
not at variance with Townsend’s later theory [5] which, in
this respect, is contrary to his earlier work [4]. Moreover,
we suggest reasons why this might be so.

Given the uniqueness of our results (in terms of high
Reynolds number) and the prominence given to previous
work confirming ¢ o« ki 1, it is clear that a careful reap-
praisal of the conditions under which a self-similar k| !
range may exist is required. Its oft-stated appearance (so
much so, that the existence of a k; ' range is often taken
for granted [12]) might plausibly be the result of inter-
pretation alone: a prescribed slope over some region of
wave number can usually be found in turbulence spectra
on log-log axes. However, more sceptical views are also
available [13]. There are several derivations, but here we
restrict ourselves to a reappraisal of the dimensional analy-
sis of Perry and co-workers [7—10], in the limit of infinite
Reynolds number.

Scalings for “large” scales (in which the direct effects of
viscosity may be neglected) that contribute to the stream-
wise velocity component may be expressed functionally as

¢11 :f(y?uT?R’kl)' (1)

Outer scaling suggests that the wall-normal distance, y,
is not important and that dimensional analysis therefore
yields

¢ulk) _ dukiR) _
2

2
Ru?

g1(kiR), @)
2

while, alternatively, “inner” scaling suggests the exclusion
of R as a relevant length scale so that, at higher wave
numbers,

duk) _ pulkry)
yuz uz

The veracity of these scalings is usually judged by the
degree of collapse of the spectra at wave numbers lower
than that at which spectral transfer becomes important. In
the range of wave numbers R™' < k; < y~! over which
both Eqgs. (2) and (3) are valid (that is, where collapse
is evident with both scalings, as required by asymptotic
matching), it follows that

b11(ky) = Rulgi(kiR) = yuZga(kiy). 4

= go(k1y). (3)
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Dimensional arguments and direct proportionality between
g1 and g» therefore imply

¢ukiR) _ A
u2 klR

T

= gi(kiR), (5)

and
dulky) _ A

2 K1y = gr(k1y), (6)

where A, is a universal constant. Collapse with both length
scales therefore suggests a self-similar structure such that
dr1(ky) = u2ky . One could therefore call this situation
“complete similarity.” However, it is possible that, for ex-
ample, while y and u, might form a complete parameter
set to define the motion in the range of wave numbers over
which collapse is apparent [Eq. (3)], these wave numbers
might in fact be too high for collapse to be possible us-
ing R and u, [Eq. (2)]. Thus simultaneous collapse is not
possible. We shall refer to this situation as “incomplete
similarity,” in which case the constant A; in Egs. (5) and
(6) cannot be universal.

This analysis is predicated on two principal assump-
tions. The first is that the viscosity, v, does not enter
the problem. This requires that k; << u,/v. In turn,
this requires the Reynolds number to be sufficently high,
or equivalently that y is sufficiently large such that the
energy-containing scales are not affected directly by vis-
cosity. The second assumption is that u, is the correct
velocity scale for both inner and outer scaling. In par-
ticular, in conformity with Townsend’s theory, it supposes
that inactive motion arises primarily through the influence
of attached eddies and that therefore u, is the appropriate
velocity scale.

Below, spectra are presented in premultiplied form on
linear-log axes since a linear ordinate enables a closer
scrutiny of scalings than that afforded by a logarithmic
one. In particular, any k| ! dependence will show as a hori-
zontal line. In addition, the use of nondimensional axes en-
sures that not only the ordinate but also the area under the
spectra is directly proportional to energy. Integration of
the spectra, therefore, yields u2/u2. Spectra are given in
the form

kiR¢p11(kiR)

2
uz

= hi(kiR), (7)

for outer scaling, and for inner scaling, in the form
kiydii(kiy)
2

T

= ha(k1y). ®)

In the context of the present experiment, it is useful to
clarify precisely what the foregoing analysis indicates.
Strictly, as long as v/u, << y < R (the Reynolds number
is “high”), Eqgs. (5) and (6) should both show a k; ! range
for R™! < k; < y~!. In order to remove the ambiguity
concerning the relative values of y and R, we have chosen
to fix alternately y in Eq. (5) and then R in Eq. (6). Then,
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FIG. 1. TInner scaling, Rep = 5.50 X 10%, R* = 1.50 X 10°.

Eq. (7) invites us to retain only R and u,. Thus while y is
fixed, u, is varied by changing the pressure drop along the
pipe. In practice, this involves a change of Reynolds num-
ber (strictly Kdrmdn number, Ru,/v) since changing R is
more difficult, but changing the Reynolds number does not
pose a problem as long as it is sufficiently high such that
the wave number range of interest is not directly affected
by viscosity. Alternatively, Eq. (8) invites the use of y
and u, only for any fixed R. In this case, we have merely
varied y (subject to v/u, << y < R) at a fixed Reynolds
number, although, as long as v can be neglected, a value
of y at any Reynolds number might be chosen.

Details of the pressurized pipe and results from ex-
tensive Pitot-tube measurements of the mean velocity
are provided in [1]. Here, fluctuating velocity mea-
surements are made using standard hot-wire techniques
using wires with length-to-diameter ratios //d = 200 for
low Reynolds numbers, and I/d = 100 for Rep = 10°.
Typically, the resolution is such that k;n = O(1), where
n is the Kolmogorov length scale. Further details are
given in [14].

Using inner scaling, Fig. 1 shows ¢11(k;y) in the form
given by Eq. (8) for Rep = 5.50 X 10* over the range in
y for which collapse might be expected. Figure 2 shows
data for Rep = 5.7 X 10° plotted in the same form. In
Fig. 1, itis evident that the Reynolds number is simply too
low for collapse to be possible. Note that R™ = 1500 only.
At the highest Reynolds number (Fig. 2), there is some
collapse for 0.05 < k;y < 1 approximately, the range in-
creasing with Reynolds number. However, the collapse is
not along a horizontal line, suggesting incomplete similar-
ity. Figure 3 shows the same data as in Fig. 2, but plot-
ted using outer scaling. At the highest Reynolds number
(Fig. 3) peaks around kR ~ 1 for 0.03 =< y/R = 0.05
suggest collapse may be possible, but inspection of Fig. 2
in the region of k;y ~ 0.03 shows that the same data
clearly do not collapse using inner scaling. Instead, spectra
at all positions show discrete separate peaks. This also sug-
gests incomplete similarity. Figure 4 shows spectra scaled
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FIG. 2. Inner scaling, Rep = 5.7 X 10°R* = 10°.
using outer scaling for data at all three Reynolds numbers
with fixed y/R = 0.1. At the two higher Reynolds num-
bers, there is some collapse at low wave numbers, and as
in Fig. 3 for kiR ~ 1, apparently occurring on a horizon-
tal line over about half a decade in k;R. However, as the
collapse is not apparent with inner scaling (Fig. 2), this
again suggests only incomplete similarity. Note also that
values of the ordinate in regions where collapse might be
seen to be possible for Figs. 1-4 varies from one figure
to another. This behavior is obviously inconsistent with a
universal value of Aj.

On balance, it would appear that while collapse of the
velocity spectra may be possible with either inner or outer
scaling (incomplete similarity), it is unlikely that simulta-
neous collapse with both scalings over the same wave num-
ber range is possible, at least up to the maximum Reynolds
number attained here. That is, complete similarity is not
observed. As suggested in [15], the behavior of 2 s
consistent with the concept of inactive motion which (a)
increases with Reynolds number and (b) increases as y/R
decreases. On the basis of (a) and (b) alone, complete
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FIG. 3. Outer scaling, Rep = 5.7 X 10°, R = 10°.
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FIG. 4. Outer scaling, y/R = 0.1.

similarity at practical Reynolds numbers is unlikely. While
the active motion scales on y and u, only (in the limit of
infinite Reynolds number) as Townsend proposed, the in-
active component always requires three scales, namely, y,
R, and a velocity scale, in compliance with (a) and (b)
above. This shows that active and inactive components in-

teract, as exemplified by the Reynolds number dependence

.+ . .
of the peak in u?  at the position of maximum energy pro-

duction in the sublayer [15]. Different velocity scales for
the inner and outer scalings of Egs. (5) and (6) are an even
more serious proposition: self-similarity would not then be
possible under any circumstance. The present theory does
not distinguish the u- and w-velocity components, and it
suggests the presence of complete similarity in both direc-
tions. Yet this is inconsistent with the mean shear in the
x direction being responsible for quasi-stream-wise vor-
tices which have no spanwise equivalent. Although the
present data do not support the existence of a self-similar
kit range, Townsend suggested as early as 1976 [5] that
“It now appears that simple similarity of the motion is not
possible with attached eddies....” Moreover, negative re-
sults are often not reported so that evidence supporting a
self-similar range may not be as overwhelming as might
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appear at first sight. Thus, even though at high-enough
Reynolds numbers a region exhibiting complete similarity
is found for the mean velocity, no such similarity is ap-
parent for the higher moments. Given the considerations
outlined here, such a result should not be unexpected.
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