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For the two-charge extremal holes in string theory we show that the Bekenstein entropy obtained from
the area of the stretched horizon has a statistical interpretation as a “coarse graining entropy”: different
microstates give geometries that differ near r � 0, and the stretched horizon cuts off the metric at r � b
where these geometries start to differ.
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Introduction.—Black holes exhibit an intriguing ther-
modynamics. Gedanken experiments indicate that a black
hole has an entropy SBek �

A
4G , where A is the area of the

horizon and G is the gravitational constant [1]. The usual
principles of statistical mechanics then suggest that there
should be eS microstates of the hole for given macroscopic
parameters of the hole. But the metric of the hole appears
to be completely determined by its macroscopic parame-
ters (a fact codified in the conjecture “black holes have
no hair”) which means that the gravitational theory is un-
able to exhibit the degeneracy required to account for the
entropy.

String theory has in recent years made significant
progress in black hole physics. For extremal and near
extremal black holes we can count the microstates for a
system of branes that carries the same energy and charges
as the black hole, and then we find an entropy Smicro

that equals the Bekenstein entropy SBek � A
4G of the

corresponding hole [2]. The concept of the anti–de sitter
conformal field theory (AdS/CFT) correspondence [3]
suggests that Smicro counts the states of the hole in a field
theory description dual to the gravitational description.

This still leaves the following question: If we insist on
using the gravitational description of the system, then are
we supposed to find eS different states, and if so, where in
the geometry would we find the differences that distinguish
these states from each other?

We will look at the extremal two charge system in 4 1 1
noncompact dimensions. The microscopic entropy Smicro
of the corresponding branes is nonzero. But the horizon
area of the (naively constructed) classical metric is zero, so
that SBek appears to be zero. In [4] the two-charge system
was studied in 3 1 1 noncompact directions. Again Smicro
was nonzero and the classical horizon area was zero. But
the curvature diverged near r � 0, so it was argued that
a “stretched horizon” should be placed at a location r �
rstretch where the curvature becomes string scale. Further,
the local temperature of the Hawking radiation becomes of
order the Hagedorn temperature at rstretch. Using the area
of the stretched horizon to write SBek � Astretch�4G, we
find that
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SBek � Smicro , (1)

in accord with the idea that SBek is always a measure of
the entropy of the system.

In 4 1 1 noncompact dimensions the two-charge ex-
tremal system has zero temperature, and so the local tem-
perature is zero at all r. But it was shown in [5] that the
curvature again becomes string scale at some rstretch, and
(1) is satisfied by the corresponding stretched horizon.

While the large curvature at r , rstretch allows the pos-
sibility that the geometry here may be modified by stringy
corrections, it does not mean that such corrections must
occur. By a set of dualities we can map the system to an
extremal D1-D5 system, where the near horizon geometry
is locally AdS3 3 S3 3 T4. Now the curvature is constant
at small r; further, if the geometry were globally of this
form, then it would suffer no quantum corrections what-
ever. In the present case we have a discrete identifications
of points in the AdS3 so it is not immediately obvious what
the corrections will be.

Thus the question arises: Is there a way to define the
stretched horizon so that we get (1) for all two-charge sys-
tems related by duality? Further, does the construction
of a stretched horizon have the interpretation of “coarse
graining” over different geometries, with the correspond-
ing SBek reflecting the number of these geometries?

In this Letter we argue that the physics of the stretched
horizon should not be thought of in terms of quantum
corrections to the naive metric. Instead, we note that while
the metrics corresponding to different microstates of the
matter system all look the same far from r � 0, close to
r � 0 they are, in fact, all different. To coarse grain over
such metrics we may therefore truncate the geometry at
a radius r � b where the geometries start differing from
each other. Putting the stretched horizon at rstretch � b we
find that its area gives SBek � Smicro. Thus we find that
the Bekenstein entropy of this system (computed from the
area of the stretched horizon) has a direct interpretation
in terms of a count of different metrics having the same
macroscopic parameters. It is also evident that the result
holds for all duality related two-charge systems.
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The two-charge system.—We consider type IIB string
theory compactified on T 4 3 S1; thus we will be con-
sidering holes in 4 1 1 noncompact dimensions. The T 4

has volume �2p�4V and the S1 has length 2pR (we set
a 0 � 1).

Following [4] we consider a fundamental string wrapped
nw times around the S1, carrying momentum P �

np

R
along the S1. These states are supersymmetric, so that
their mass is known for all values of the string coupling
g. This mass is M � Rnw 1

np

R . The entropy obtained
from counting string states with this mass and charges is
Smicro � 2

p
2 p

p
npnw .

We will refer to the above string states as the FP sys-
tem, where F stands for fundamental string winding and P
stands for momentum. By a sequence of S and T dualities
we can map this system to one having n1 � np D1 branes
wrapped on the S1, and n5 � nw D5 branes wrapped on
T 4 3 S1. We call this latter system the D1-D5 system.

To achieve our desired goal of obtaining entropy by
counting geometries we must perform the following steps:
(a) We must construct geometries corresponding to differ-
ent microstates of the FP or D1-D5 system. (b) These
geometries may have singularities at small r. In that case
we must be satisfied that there is no further degeneracy
associated with that singularity, so that the different ge-
ometries do indeed count different states of the system.
(c) Finally we must locate the radius r � b where the ge-
ometries for generic microstates start to differ from each
other. We must then compute the area of a stretched hori-
zon placed at this location, and compare the Bekenstein
entropy obtained thereby with the count of microstates.

Geometries for different microstates.—To address (a)
consider the FP system. The fundamental string wraps the
S1nw times before closing, so there are nw “strands” of the
string at any given value of the coordinate y parametrizing
the S1. The momentum excitation gives traveling waves
along this string, creating vibrations in the eight directions
transverse to the string. In a generic vibration mode the dif-
ferent strands do not move together— they separate away
from each other since the transverse displacement 8-vector
�x satisfies the periodicity �x� y 1 2pRnw� � �x� y�, rather
than �x� y 1 2pR� � �x� y�.

The metric for a single string carrying momentum is
known [6], and the metric for the “multiwound string”
having several strands can be computed by superposing
harmonic functions describing the individual strands. In
the classical limit of large nw one must then smooth out
the strands into a continuous string source. Such metrics
for the multiwound string were found in [7] for a special
class of vibration profiles, and extended in [8] to generic
vibration profiles. For large nw the vibration profile for a
generic mode changes by a very small amount when y !

y 1 2pR, so the solutions in the classical limit are found
to be y independent and a T duality may be performed
along the S1. Using this and other dualities the solutions
are mapped to geometries for the D1-D5 system [8].
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The metric for a general D1-D5 bound state is then
found to have the form

ds2
E �

1
p

g1g5
�2�dt 2 Aidxi�2 1 �dy 1 Bidxi�2�

1
p

g1g5

4X
i�1

dxidxi , (2)

where the functions g1, g5, and Ai are given in terms of an
arbitrary function �F�y�,

g1��x� � 1 1
Q5

L

Z L

0

j
��F�y�j2 dy

j�x 2 �F�y�j2
, (3)

g5��x� � 1 1
Q5

L

Z L

0

dy

j�x 2 �F�y�j2
, (4)

Ai��x� � 2
Q5

L

Z L

0

�Fi�y� dy

j �x 2 �F�y�j2
. (5)

We will not give a form of the field Bi here, since it will not
be used. In the dual FP system �F�y� yields the transverse
displacement of the vibrating string as a function of the
null coordinate y � t 1 y.

If j �F�y�j , b, then for r ¿ b the metric has the form
[8]

ds2
E �

1
p

g1g5
�2dt2 1 dy2� 1

p
g1g5 �dr2 1 r2dV2

3 � ,

g1�r� � 1 1
Q1

r2 , g5�r� � 1 1
Q5

r2 .
(6)

The charges are related by Q1 �
Q5

L

RL
0 j

��F�y�j2 dy.
The location r � b will turn out such that a mass-

less particle falling radially down the throat takes a time
Dt � R

p
n1n5 to reach r � b. For fixed classical charges

Q1, Q5 this time goes to infinity as h̄ ! 0. Thus if we
look up to any “classical” distance down the throat then
all the geometries look the same [Eq. (6)], so that we see
“no hair.”

But around r � b the different metrics start to differ
from each other. Further, they all have an “end,” which
contains a mild singularity along a certain curve— the
shape of this curve depends on the chosen microstate.
These different geometries are schematically sketched in
Fig. 1(b). Each function �F�y� gives one extremal D1-D5
geometry, which means that for each classical profile of
the oscillating string in the FP system there is a classical
D1-D5 geometry. We take this to imply that if we quan-
tize the metric of the D1-D5 system we will get one state
of the throat for each quantum state of the string in the
FP system. This gives us the count of microstates arising
from the different possible geometries of the D1-D5 sys-
tem with given total charges: Smicro � 2

p
2 p

p
n1n5.

We now address the requirement (b). In [9] the propaga-
tion of a scalar was studied in the geometries correspond-
ing to different states of the D1-D5 system. The CFT dual
of these geometries can be described through an “effective
211303-2
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(a)

(b)

(c)

FIG. 1. (a) The geometry for r ¿ b; (b) two different possible
ends to the throat; (c) truncation by a stretched horizon.

string” which carries massless bosonic and fermionic vi-
bration modes as its low energy dynamics. For a class of
geometries where the wave packet traveled without distor-
tion it was found that the travel time for the wave packet in
the “throat” exactly equaled the time in the dual CFT for
the vibration modes to travel around the effective string:

DtCFT � DtSUGRA . (7)

The wave packet could not “enter” into the singularity and
spend additional time residing at the singularity. It was
then argued that for the generic geometry (where the sin-
gularity was a curve with more complicated shape) a simi-
lar result held: the singularity was mild enough that the
wave packet reflected from the singular curve rather than
enter into the singular region. Thus we conclude that the
throat of the geometry is indeed a dual representation of
the D1-D5 CFT with no additional degrees of freedom be-
ing associated with the singularity at the end of the throat.

We now perform step (c). We let the geometry be
(6) for r . b and put a stretched horizon at the location
r � b where the generic geometries start to depart from
the form (6) [Fig. 1(c)]. The parameter b will be deter-
mined shortly. The area of the stretched horizon (in the
6D geometry) is then

A �
Z

r�b
r3pg1g5 dy dV3 � 4p3Rb

p
Q1Q5 . (8)

(We have assumed b ø Q1, Q5 which will be well satis-
fied in the classical limit.) To determine b we start with
the FP system, and note that the multiwound string has
a total length LT � 2pRnw and carries total momentum
2pnpnw�LT . A statistical analysis shows that the mean
wavelength of vibration is l � ḡLT with ḡ � 1�

p
n1n5.

If we take a string carrying vibrations with l � ḡLT , then
we find upon dualizing to D1-D5 [7]:
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b �
p

Q1Q5 ḡ

R
�

g
p

V R
. (9)

(In this calculation we need to filter out the low energy
tail of the energy distribution; the details of this will be
discussed elsewhere.) We can now find the entropy of the
stretched horizon �G�6� �

8p6g2

�2p�4V �

SBek �
A�6�

G�6� �
A�5�

G�5� �
p

n1n5 , (10)

which agrees with Smicro � 2p
p

2
p

n1n5.
We now extend the above analysis to the case where the

two-charge system also carries angular momentum. Let
the angular momentum be Jh̄ in the x1-x2 plane (these
are two of the four noncompact directions). An analy-
sis of the microstate (in the FP language) gives Smicro �
2p

p
2
p

n1n5 2 J . We then find the geometries for differ-
ent FP microstates with angular momentum J and dualize
these to geometries for the D1-D5 system. The metrics are
given by (2)–(5) with

�F�y� � a �e1 cos
2py

L
1 a �e2 sin

2py

L
1 �X�y� . (11)

The singularity now lies close to a circle of radius

a �
g

p
V R

p
J (12)

in the x1-x2 plane. The generic geometries differ from
each other only in a tube around this circle [each state is
specified by its own fluctuation profile �X�y�: j �X�y�j , b],
so the stretched horizon has the shape of a “doughnut”
in the noncompact space x1, x2, x3, x4 (Fig. 2). Again
performing a statistical analysis of the vibrations in the
FP system, we find b � g

p
V R

. All geometries described
by the profile (11) look similar outside the doughnut, and
the coefficients of the generic metric (2) can be found using
(3)–(5):

g1 � 1 1
Q1

f0
, g5 � 1 1

Q5

f0
, (13)

Aidxi �

s
J

n1n5

2
p

Q1Q5 a

f0��x ? �x 1 a2 1 f0�
�x2dx1 2 x1dx2� ,

f0 � ���x ? �x�2 1 2a2�x2
3 1 x2

4 2 x2
1 2 x2

2 � 1 a4�1�2.
(14)

FIG. 2. A typical singular curve (dashed line) and stretched
horizon (torus surface) for J ¿

p
n1n5.
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The area of the stretched horizon (computed at fixed t) for
this metric finally gives

SBek �
A�6�

4G�6� �
VR
pg2

Z
d3S�g1g5 2 AiAi�1�2

�
p

n1n5 2 J � Smicro . (15)

Discussion.—Our conventional understanding of en-
tropy is based on coarse graining over a large number of
microstates. Black hole entropy has proved puzzling since
black holes seem to have no hair and the entropy SBek is
instead given by the horizon area. We have seen above that
at least for the two-charge system (which has a stretched
horizon rather than a classical horizon) we do indeed have
a complete set of hair, that the appearance of the stretched
horizon can be regarded as a coarse graining since it
truncates the geometries where they start to differ from
each other, and that the area of such a stretched horizon
gives a SBek which is of order the entropy Smicro found by
actually counting the different allowed geometries.

A crucial ingredient in the above result was the fact that
the D1-D5 bound states had a nonzero size; this caused
the throat to end at some point before reaching r � 0,
with a metric near the end that reflected the choice of
microstate. This nonzero size could itself be traced back,
through duality to the FP system, to the fact that a string
�F� carrying momentum �P� must spread over a certain
transverse region in order to carry the momentum. Thus
the nonzero size and the consequent hair are a very basic
feature of the structure of two-charge states.

Should we regard the stretched horizon of the two-
charge system as a black hole horizon? We performed
a detailed investigation (to be presented elsewhere) of the
trajectory of a massless particle that falls into the region
r , b. For a generic microstate the singular curve of the
metric (2) is a complicated “random curve” in the trans-
verse coordinates x1, . . . , x4. A null geodesic gets de-
flected through an angle of order unity on passing near
any point on this curve, and as a consequence the particle
stays trapped in the region r , b for times that go to infin-
ity in the classical limit (Fig. 3). If we choose to describe
the particle by its wave function instead, then we expect
large trapping times due to the presence of approximately
localized wave functions in the “random potential” arising
from the metric at r , b. Thus it appears that we should
regard the stretched horizon as a horizon, with the time de-
211303-4
FIG. 3. Typical geodesic (dashed line) near the singular curve
(solid line).

lay in emerging from the horizon being due to “trapping”
in the hair describing the microstate.

A similar picture may emerge for the D1-D5-
momentum hole (which has a classical horizon area). The
size of the three-charge bound state at weak coupling
was argued to have the same algebraic expression as the
horizon radius [10]. The metrics for all microstates are
the same up to a “classical distance” down the throat, but
the throats may end farther down, with the geometry near
the end characterizing the microstate. In view of the fact
that the momentum charge generates vibrations within
the T4 we expect that in this case both the S3 and the T4

will necessarily be deformed near the end of the throat.
Nonextremal holes we regard as highly excited extremal
states, and so they are expected to be harder to analyze.
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