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We compare the latest cosmic microwave background data with theoretical predictions including cor-
related adiabatic and cold dark matter (CDM) isocurvature perturbations with a simple power-law depen-
dence. We find that there is a degeneracy between the amplitude of correlated isocurvature perturbations
and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribu-
tion. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature
amplitude. The main result is that current microwave background data do not exclude a dominant con-
tribution from CDM isocurvature fluctuations on large scales.
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Increasingly accurate measurements of temperature
anisotropies in the cosmic microwave background sky
offer the prospect of precise determinations of both
cosmological parameters and the nature of the primordial
perturbation spectra. The recent Boomerang [1], DASI
[2], and Maxima [3] data have shown evidence for three
peaks in the cosmic microwave background (CMB)
temperature anisotropy power spectrum as expected in
inflationary scenarios. In this context the CMB data sup-
port the current “concordance” model based on a spatially
flat Friedmann-Robertson-Walker universe dominated by
cold dark matter and a cosmological constant [4]. In
addition, the CMB data no longer show any signs of being
in conflict with the big bang nucleosynthesis data [5].

In the studies which have estimated the cosmological
and primordial parameters with these new data sets, only
the case of purely adiabatic perturbations has been con-
sidered so far. That is, the perturbation in the relative
number densities of different particle species is taken to
be zero. Although this assumption is justified for pertur-
bations originating from single-field inflationary models,
it does not necessarily follow when there is more than one
field present during inflation [6–10]. Other possible pri-
mordial modes are isocurvature [11,12] (also referred to
as “entropy”) modes in which the particle ratios are per-
turbed but the total energy density is unperturbed in the
comoving gauge.

Most previous studies have examined the extent to which
a statistically independent isocurvature contribution to the
primordial perturbations may be constrained by CMB and
large-scale structure data [13,14]. It has recently been
shown that multifield inflationary models in general pro-
duce correlated adiabatic and isocurvature perturbations
[7–10]. These correlations can dramatically change the
observational effect of adding isocurvature perturbations
[12,15]. Up until now, only the case of scale-invariant cor-
related adiabatic and entropy perturbations has been con-
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sidered. Trotta et al. [16] found (with an earlier CMB data
set) that in this case the cold dark matter (CDM) isocur-
vature mode was likely to be very small if not entirely
absent, though they did find that a neutrino isocurvature
mode contribution [12] was not ruled out. In this Letter
we examine to what extent a correlated CDM isocurvature
mode is consistent with the recent CMB data when a tilted
power law spectrum is allowed.

Nonadiabatic perturbations are produced during a pe-
riod of slow-roll inflation in the presence of two or more
light scalar fields, whose effective masses are less than the
Hubble rate. On subhorizon scales, fluctuations remain in
their vacuum state so that when fluctuations reach the hori-
zon scale their amplitude is given by ˆdfi� � �H��2p�âi ,
where the subscript � denotes horizon crossing and âi are
independent normalized Gaussian random variables, obey-
ing �âi âj� � dij. The total comoving curvature and en-
tropy perturbation at any time during two-field inflation
can quite generally be given in terms of the field perturba-
tions, along and orthogonal to the background trajectory,
as [8]

R̂ ~ cosu ˆdf1 1 sinu ˆdf2 , (1)

Ŝ ~ 2 sinu ˆdf1 1 cosu ˆdf2 , (2)

where u is the angle of the inflaton trajectory in field
space. Although the curvature and entropy perturbations
are uncorrelated at horizon crossing, any change in the an-
gle of the trajectory, u, will begin to introduce correla-
tions [8]. Further correlations may be introduced by the
model dependent dynamics when inflation ends and the
fields’ energy is transformed into radiation and/or dark
matter. The comoving curvature perturbation, Rrad, on
large scales during the radiation-dominated era is related
to the conformal Newtonian metric perturbation, F, by
Rrad � 3F�2. The isocurvature perturbation is Srad �
drCDM�rCDM 2 �3�4�drg�rg and remains constant on
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large scales until it reenters the horizon. On large scales the
CMB temperature perturbation can be expressed in terms
of the primordial perturbations [7]

d̂T

T
�

1
5

�R̂rad 2 2Ŝrad� . (3)

The general transformation of linear curvature and en-
tropy perturbations from horizon crossing during inflation
to the beginning of the radiation era will be of the formµ

R̂rad

Ŝrad

∂
�

µ
1
0

TRS

TSS

∂ µ
R̂�

Ŝ�

∂
. (4)

Two of the matrix coefficients, TRR � 1 and TSR � 0,
are determined by the physical requirement that the cur-
vature perturbation is conserved for purely adiabatic per-
turbations and that adiabatic perturbations cannot source
entropy perturbations on large scales [17]. The remain-
ing terms will be model dependent. If the fields and
their decay products completely thermalize after inflation
then TSS � 0 and there can be no entropy perturbation if
all species are in thermal equilibrium characterized by a
single temperature, T . This means that it is unlikely that
a neutrino isocurvature perturbation could be produced by
inflation unless the reheat temperature is close to that at
neutrino decoupling shortly before primordial nucleosyn-
thesis takes place. On the other hand, a cold dark matter
species could remain decoupled at temperatures close to,
or above, the supersymmetry breaking scale yielding TSS .
The simplest assumption being that one of the fields can
itself be identified with the cold dark matter [7].

The slow evolution (relative to the Hubble rate) of light
fields after horizon crossing translates into a weak scale
dependence of both the initial amplitude of the perturba-
tions at horizon crossing and the transfer coefficients TRS

and TSS . Parametrizing each of these by simple power
laws over the scales of interest, requires three power laws
to describe the scale dependence in the most general adia-
batic and isocurvature perturbations,

R̂rad � Arkn1 âr 1 Ask
n3 âs , (5)

Ŝrad � Bkn2 âs . (6)

The generic power law spectrum of adiabatic perturba-
tions from single-field inflation can be described by two
parameters, the amplitude and tilt, A and n. Uncorrelated
isocurvature perturbations require a further two parame-
ters, whereas we now have in general six parameters. The
dimensionless cross correlation

cosD �
�RradSrad�

��R2
rad� �S 2

rad��1�2
�

sgn�B�Askn3p
A2

rk2n1 1 A2
sk2n3

(7)

is in general scale dependent.
We will investigate in this Letter the restricted case

where all the spectra share the same spectral index and
hence D is scale independent. This might naturally arise
in the case of almost massless fields, where the scale de-
pendence of the field perturbations is primarily due to the
decrease of the Hubble rate during inflation, which is com-
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mon to both perturbations and yields ni , 0. In the fol-
lowing analysis we also allow ni . 0, but we shall see that
blue power spectra of this type are not favored by the data.

We then have four parameters, A �
p

A2
r 1 A2

s , B, D,
and n describing the effect of correlated perturbations,
where n � 1 1 2ni is defined to coincide with the stan-
dard definition of the spectral index for adiabatic perturba-
tions. We leave an investigation of the full six parameters
for future work.

By defining the entropy-to-adiabatic ratio B� � B�A,
the parameter A becomes an overall amplitude that can
be marginalized analytically (see below). In the follow-
ing, to simplify notation, we write A � 1 and drop the
asterisk from B�. We limit the analysis to B . 0 and
0 , D , p, since there is complete symmetry under D !
2D and under �B ! 2B, D ! p 2 D�. Further, we al-
low three background cosmological parameters to vary,
vb � Vbh2, vc � VCDMh2, and VL, where Vb,CDM,L
is the density parameter for baryons, CDM, and the cos-
mological constant, respectively. Since we assume spatial
flatness, the Hubble constant is h2 �

vc1vb

12VL
. Our aim is

therefore to constrain the six parameters,

ai � 	B, D, n, vb , vc, VL
 ,

by comparison with CMB observations. We consider the
COBE data analyzed in [18], and the recent high-resolution
Boomerang [1], Maxima [3], and DASI data [2]. In order
to concentrate on the role of the primordial spectra (and
limit the numerical computation required) we will fix the
neutrino masses (zero) and spatial curvature (zero). We
will also neglect any contribution from tensor (gravita-
tional wave) perturbations.

We use a CMBFAST code [19] modified in order to allow
correlated perturbations to calculate the expected CMB
angular power spectrum, Cl , for all parameter values. [Our
Cl is defined as Cl � l�l 1 1�C�

l ��2p�, where C�
l is the

square of the multipole amplitude.] The computations
required can be considerably reduced by expressing the
spectrum for a generic value of B and D as a function of the
spectra for other values. Let us denote the purely adiabatic
and isocurvature spectra when B � 1 as �Cl�ad and �Cl�iso,
respectively, and the correlation term for totally correlated
perturbations B � 1, D � 0 as �Cl�corr. Then we can write
the generic spectrum for arbitrary B and D as

Cl � �Cl�ad 1 B2�Cl�iso 1 2B cosD�Cl�corr . (8)

We can obtain �Cl�corr from Eq. (8) and using any
B cosD fi 0. The library spectra �Cl�ad and �Cl�iso and
�Cl�corr can then be used to evaluate Cl for any B and
D. A different set of library spectra will be needed for
each set of cosmological parameters. When n1 fi n3 then
D is not generally scale independent and so it would be
necessary to evaluate the shape of the cross-correlation
spectra �Cl�corr for each form of D�k�, but one can always
perform the scaling with respect to B analytically.

The remaining input parameters requested by the
CMBFAST code are set as follows: TCMB � 2.726K,
211302-2
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YHe � 0.24, Nn � 3.04. All our likelihood functions
below are obtained by marginalizing over tc, the optical
depth to Thomson scattering, in the range �0, 0.2� (larger
tc have a very small likelihood). We did not include the
cross correlation between band powers because it is not
available, but it should be less than 10% according to [1].
An offset log-normal approximation to the band-power
likelihood has been advocated by [18] and adopted by
[1,3], but the quantities necessary for its evaluation are
not available. Since the offset log normal reduces to a
log normal in the limit of small noise, we evaluated the
log-normal likelihood

22 logL�aj� �
X

i

�Z�,t ��i ; aj� 2 Z�,d��i��2s
22
� , (9)

where Z� � logĈ�, the subscripts t and d refer to the
theoretical quantity and to the real data, respectively, Ĉ�

are the spectra binned over some interval of multipoles
centered on �i , s� are the experimental errors on Z�,d , and
the parameters are denoted collectively as aj .

The overall amplitude parameter A can be integrated out
analytically using a logarithmic measure d logA in the like-
lihood. Analogously, we can marginalize over the relative
calibration uncertainty of the Boomerang, Maxima, and
DASI data (see [1,3]), by an analytic integration to ob-
tain the final likelihood function that we discuss in the fol-
lowing. We neglected beam and pointing errors, but we
checked that the results do not change significantly even
where increasing the calibration errors by 50%. We assume
a linear integration measure for all the other parameters.

In order to compare with the Boomerang, Maxima, and
DASI analyses we assume uniform priors as in [1], with the
parameters confined in the range B [ �0, 3�, D [ �0, p�,
n [ �0.6, 1.4�, vb [ �0.0025, 0.08�, vc [ �0.05, 0.4�,
and VL [ �0, 0.9�. As extra priors, the value of h is
confined in the range �0.45, 0.9� and the universe age
is limited to .10 Gyr as in [1]. A grid of 
10 000
multipole CMB spectra is used as a database over which
we interpolate to produce the likelihood function.

Figure 1 shows one of the best cases in our
database, corresponding to �B, D, n, vb, vc, VL� �
�0.63, p�4, 0.9, 0.0225, 0.1, 0.7�. The adiabatic ��Cl�ad�,
entropy �B2�Cl�iso�, and correlated �2B cosD�Cl�corr�
components are shown. The primary effect of adding a
positively correlated component is to reduce the height of
the low-l plateau relative to the acoustic peaks [15]. This
is in contrast to the uncorrelated case, where the addition
of entropy perturbations increases the plateau height
relative to the peaks. Isocurvature perturbations have
only a significant effect on intermediate angular scales for
strongly blue-tilted spectra. They have a minimal effect
on the peak structure for n , 1. Thus we find a near
degeneracy between B and n when D � 0: the effect of
adding maximally correlated isocurvature perturbations
mimics an increase in the primordial slope. This makes
clear the importance of varying n when studying corre-
211302-3
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FIG. 1. Best-fit spectrum (solid line) and the component
spectra, shown with the data with one sigma error bars, using
maximum-likelihood normalization and unadjusted relative
calibration.

lated isocurvature perturbations: a lower n allows a larger
B to be consistent with the CMB data.

This degeneracy is not perfect due to the different effect
of n and B on the detailed shape of the angular power
spectrum. In Fig. 2 we plot the likelihood for B and cosD,
having marginalized over the other parameters. The plot
shows that the marginalized likelihood peak occurs for
B � 0.4, cosD � 0.7, although the pure adiabatic case
B � 0 is well within one sigma. It is remarkable that,
when a nonzero correlation is allowed, quite large values of
B become acceptable, up to B � 1.5 (to 95% C.L.) when
cosD � 0.8. Anticorrelation, on the other hand, reduces
the range of B. We also show the likelihood contours
possible in a future Planck-like experiment with zero cali-
bration uncertainty and accuracy limited only by cosmic
variance for l , 1000. This shows that future CMB data
alone could detect a finite isocurvature contribution around
the current peak of likelihood.

We found that the contour lines of the cosmological
parameters vb and vc are almost parallel to B for B ,

1. This means that the isocurvature perturbations do not
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FIG. 2. Contour plot of the two-dimensional likelihood for B
and cosD. The solid contours enclose 39%, 86%, and 99% of
the likelihood and the star marks the peak. Dotted contours are
for a future Planck-like experiment.
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FIG. 3. One-dimensional likelihood functions in arbitrary
units. The (light) dotted lines for the purely adiabatic models
�B � 0�; dashed lines for uncorrelated fluctuations �cosD � 0�;
solid lines for correlated fluctuations. See text for further
explanation.

alter significantly the best estimates for these cosmological
parameters. On the other hand, increasing B enlarges the
region of confidence for VL and for n toward smaller
values.

Figure 3 summarizes our results: we plot the one-
dimensional likelihood functions obtained by marginaliz-
ing all the remaining parameters. Figure 3a shows that the
contribution of isocurvature perturbations can be as large
as the adiabatic perturbations, or even larger: we find that
B , 1.3 to 95% C.L. In contrast, uncorrelated isocurva-
ture perturbations cannot exceed B , 0.5 to the same C.L.
The likelihood functions for n and VL extend toward
smaller values, as anticipated, while the CDM and the
baryon density estimates remain quite unaffected. The av-
erage values are n � 0.94 6 0.1, vb � 0.023 6 0.004,
vc � 0.1 6 0.03, and VL � 0.72 6 0.11.

By contrast, Enqvist et al. [14] found that a large un-
correlated isocurvature contribution is only consistent with
blue-tilted slopes. The reason for this difference is that
correlations can cause the acoustic peak height to increase
relative to the Sachs-Wolfe plateau (see Fig. 1), unlike the
case of independent perturbations where the relative height
always decreases. Trotta et al. [16] found that the CMB
data were not consistent with a significant CDM isocur-
vature contribution because they restricted the primordial
slope, n, to be unity.

As can be seen from Fig. 3 our estimates of vb and vc

are virtually unaffected by the addition of correlated CDM
211302-4
isocurvature perturbations. Thus, in our model, the nature
of the isocurvature component can be investigated almost
independently of the composition of the matter component.

The main conclusion of this Letter is that the current
CMB data are consistent with a large correlated CDM
isocurvature perturbation contribution when the spectral
slopes are allowed a tilt to the red �n , 1�. The higher
precision of future satellite data has the potential to detect
the isocurvature contribution, if any, thereby showing that
inflation was not a single-field process.
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