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Classical No-Cloning Theorem
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A classical version of the no-cloning theorem is discussed. We show that an arbitrary probability
distribution associated with a (source) system cannot be copied onto another (target) system while leav-
ing the original distribution of the source system unperturbed. For classical dynamical systems such a
perfect cloning process is not permitted by the Liouvillian (ensemble) evolution associated with the joint
probability distribution of the composite source-target-copying machine system.
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The physics of information has been investigated inten-
sively in recent years [1—12]. Much of the current interest
in the field is due to novel and counterintuitive ways of
processing and transmitting information that are allowed
by the laws of quantum mechanics [5—7]. Concepts from
quantum information theory have been shown to provide
new insights into profound topics such as the connection
between quantum mechanics and the second law of ther-
modynamics [10]. An interesting recent development is
the identification of a classical analog of one of the key in-
gredients underlying these information-related processes:
entanglement [11]. Quantum entanglement, however, is
not the only aspect of quantum physics being relevant for
the processing of information that has been shown to ad-
mit of a classical counterpart. For instance, in [13,14] one
can find that non-Boolean logics can arise within classical
physics.

A hallmark feature of quantum information is that it
cannot be cloned: an unknown quantum state of a given
(source) system cannot be perfectly duplicated while leav-
ing the state of the source system unperturbed [15,16]. In
fact, an ideal copying process would read

12) ® |¢)s @ [0) = [Z1)) @ )5 ® [d)r, (1)

where the first ket denotes the state of the copying ma-
chine, the second one corresponds to the unknown quan-
tum state to be copied (source), and the third describes the
system to which the unknown state of the source shall be
copied (target). According to the no-cloning theorem no
unitary (quantum mechanical) transformation exists that
can perform the process (1) for arbitrary source states | ¢ ),
[17,18]. The enormous impact of this theorem is reflected
by several studies that focused on different aspects of the
nonclonability of quantum information [19-23]. For ex-
ample, the no-cloning theorem yields a new formulation of
the quantum uncertainty principle that applies to individ-
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ual systems [19]. Furthermore, universal cloning machines
have been proven to exist, which can produce approximate
copies of an unknown qubit with a fidelity that does not de-
pend on the input qubit [20,21]. In analogy with the case
of quantum entanglement, in this Letter we show that the
quantum no-cloning theorem possesses a classical coun-
terpart. Below we prove that universal perfect classical
cloning machines violate the Liouville dynamics governing
the evolution of statistical ensembles. This kind of copying
process is in conflict with the conservation of the Kullback-
Leibler information distance [24,25] and with the linearity
of the Liouville dynamics.

Consider a general classical deterministic dynamical
system, whose evolution is governed by the equations of
motion

dx

o YW,
where x denotes a point in the concomitant N-dimensional
phase space [26]. A statistical ensemble of systems evolv-
ing according to (2) can be depicted by its probability
distribution P (x,t). Then, the well-known Liouville
equation,

with x, v € R", 2)

9
E’P-l—V-(v’P)—O, (3)

describes the dynamics of this distribution [27]. For this
type of evolution the Kullback-Leibler information mea-
sure [24,25],

Pi(x)

Prx)’
provides a convenient way to measure the distance be-
tween two distinct probability distributions 2, and P, be-

cause, remarkably, it is invariant under dynamical changes
prescribed by the Liouville equation (3). Indeed, after

K(?l,:pg) = f dx ’Pl(x) In (4)
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combining (4) and (3) one directly finds by integration by parts

K [affren) 2 B2 [T wly - wm - By wm)]

dt P oot P ot
n ) (V)R] v -y
= d(Vl—’P— P v - 7P In>| =0, 5
[ x|: n T2 1 T2 2 v in T2 ( )
when we assume that eventual boundary terms vanish; v
denotes the sum of the components of v. assume that the joint probability distribution of the ini-

To explicitly define a copying process we consider a  tial state of the composite system can be factorized by
composite system constituted by three distinct classical ~ means of
subsystems: the copying mach'ine (m), the source (s), and P(x) = g(t;f:r)t (x(m))g)(v)(x(v)) tflt) k( (z)). %)
the target (7). The corresponding phase space is equal to
the Cartesian product of the spaces associated with each
subsystem. Thus, coordinates x describing the entire com-
posite system can be cast in the form

The initial distributions ’Pstart (x) and ’Pblank (x") repre-
sent the starting state of the copying machine and the blank
state of the target system, respectively —both are assumed
to be always identical. Conversely, the initial distribution
x = (" 2 x), (6)  of the source system P®)(x")) can be an arbitrary distri-
bution that we want to copy onto the target system.

The Kullback-Leibler distance between two different
states of the copying process associated with two distinct

where x, x®), and x) denote the phase space coor-
dinates describing the state of the copying machine, the
source system, and the target system, respectively. Ac-

s (s) .
cordingly, the volume element dx factorizes like dx =  initial states Py (x) of the source system (that is, two
dx"™dxdx®. For the sake of simplicity we further | different initial states of the source that we want to clone)

can be obtained by inserting (7) into (4):

K(P,P) = [ dx P, (x) I[P, (x)/ Py(x)] = f dx Py (x) I[P (x9)/ Py (x)]

- f dx® PO [P P = k (P, Py, (8)

That is, the information distance between two different
initial states is exclusively given by the distance between = which clearly constitutes a contradiction because K(-, )

the two source systems. is positive definite unless the two probability distributions

The joint probability distribution describing the final  are identical for the two initial states and, thus, the source

state is denoted as systems must be identical. Hence, classical cloning dis-
O(x) = O(x™, x® x0)y, (9)  agrees with (10).

Second, in the more general situation we do not assume
that final states can be factorized and focus our attention
| on marginal probabilities (of the final state). The source is
K(P,P) =K(9,, 9,). (10)  being copied whenever the two marginal distributions de-
scribing source and target systems are equal to the original
distribution associated with the source system; that is,

so that the aforementioned conservation of the Kullback-
Leibler distance formally reads

To show its violation under classical cloning we consider
two different assumptions with respect to the final states or,
more precisely, to the degree of statistical independence of
the final (sub-)systems.

First, let the final state be entirely factorizable in (14)

terms of f dx™ dx® Q(x) = rp(s)(x(t)).
Qx) = Q(m)(x(m))’P(“)(x(s))’P(“)(x(’)). (1)

Then, in analogy with (8), we find for the final states

[ @ ax @) = P,

These forms are presumably the least restrictive con-
straints for a copying process. By recourse to the well-

K(9,,9,) = Z K(Q(l) (’)) known inequality,
jE{m,s,t}
ch(y) [[ } [dy q:(y)
m m s s d )11’1 d ) In"——-—=

_ k(0" 0" 4 ax(PY P, (12) f v qi(y y qi(y Tdyar(y)’
Inserting (12) and (8) into (10) leads to (15)
© ) ! ) ( | which is verified by any pair of non-negative functions
KPP, Py = -Kk(9,",95"), (13)  qi(y) and g2(y) [24,25], we can establish a lower bound
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for the Kullback-Leibler distance between the final distributions both fulfilling (14):
K(Q1,92) = f dx Q,(x)In 312"; f dx®) f dx™ dx" Q,(x)In 312";
= f dx® [[ dx™ dx\") Q_ﬂx)}lnfiiizz Ziz; g;g; = f dx® ’Pl(s)(x(s)) ln% =K(P, D).
(16)

Notice that this derivation is solely based on the first of the two equations in (14). Because of symmetry, however, we
can alternatively derive (16) utilizing the second equation in (14). Replacing x**) «— x() we get

K(9Q:,95) = f dx® f dx™ dx®) 9 (x)In

2.1k
Qs(x)

P )

dx P (x)1n
f &) PO (x0)

=K(P,P). AN

Because the identity in Eq. (15) holds if and only if
q1(y)/q2(y) = C = const, we find an identity in (16)
only if the final probability distributions are of the form

Qk(x) = Rl ) V",V x"), k=12,
(18)
or, when considering (17), if
Qi(x) = G )W, x¥,x),  (k=1,2)
19)
holds. Combining Eqgs. (18) and (19) leads to
Qi _ AEY) a6 20)
2, HEY)  G@x)

Obviously, the second and third terms in Eq. (20) depend
on different variables—x®) vs x() —and, hence, all ratios
need to be constant. That constant has to be equal to 1
because both probability distributions @ 1 and 9 , are nor-

Q= ,PI(S) =

malized. Consequently, (20) yields 9, =
* ’Pz(s), always leads

’PZ(S), while the nontrivial case, P,

to strict inequalities in both (16) and (17). Similar to (13)
this implies the nonpreservation of the Kullback-Leibler
distance if classical cloning is rendered possible.

To stress this contradiction from a slightly different per-
spective we finally consider a more constrained type of
copying process, in which the final marginal probability
distribution jointly describing the source and target sys-
tems is factorizable—note that the distribution associated
with the entire system, as in (11), does not possess such a
property. The linearity of the Liouville evolution has im-
portant consequences in such an instance. Indeed, the case

f dx™ Q(x) = POGNPOED) @1
requires a copying process [28] that contravenes the linear-
ity of the evolution described by the Liouville equation
(3). This violation can be detected once (21) holds for two
distinct initial distributions P, and 7, that we combine
linearly by means of P = aP, + BP,. With (21) we

| directly obtain for the corresponding final state

f dx™ Q (x) = f dx™[aQ,(x) + f,(x)] = aP )PP ) + P )P (x ),

(22)

whereas the (source/target) marginal probability associated |
with the copying process should read

f dx™ Q(x) = [P () + BPY ()]

X [aPPx?) + PV x )], (23)

In other words, a copying process preserving the statistical
independence of source and target states, as expressed by
the factorizations in (7) and (21), is not compatible with
the linearity of the Liouville dynamics.

Of course, copying processes constitute an everyday
task within classical computers that must be reliably per-
formed—just think of the millions of bits being copied
every day in just a single computer. Is there anything
special in these kinds of cloning processes (provided that
our description of the dynamics is applicable [29])? Obvi-
ously, our line of argumentation is valid only if the funda-

mental Kullback-Leibler distance between ’Pl(s) and ’Pz(s)

210601-3

is always well defined. For example, probability distribu-
tions involving & distributions have to be excluded from
our considerations [30]. Thus, the clonability of states of
the form

(5
i)

,J)i(s)(x(s)) _ B(X(S) —x 24)

which do not exhibit any (intrinsic) uncertainty, cannot
be ruled out in general. Actually, this situation is by no
means far-fetched as one can immediately find explicit
examples of dynamical systems that are able to perform
copying processes for just this kind of distribution. Con-
sider, for instance, a trivial source dynamics and a damped
linear oscillator whose equations of motion for the (one-
dimensional) target system reads

=0,

mi — kx) + 2@ = x6) 2,

(25)

210601-3



VOLUME 88, NUMBER 21

PHYSICAL REVIEW LETTERS

27 MAy 2002

Certainly, any initial source state described by a & distri-
bution (24) will be perfectly cloned into the target system.
Note that in this example one could interpret the oscilla-
tor’s momentum p = mx as the state variable x(™ of the
“copying machine.”

A distinct property of & distributions like (24) is that
they do not overlap. Put differently, two (different) dis-
tributions always obey PP = 0. Hence, it seems likely
that two nonoverlapping distributions are always clonable
by recourse to an appropriate classical copying machine.
Yet, we have not been able to prove this in general, not
the least because the Kullback-Leibler distance is not well
defined — P needs to vanish at certain points at which P
is finite; cf. (4).

In short, a universal copying machine preserving the sta-
tistical independence of the source and target systems, as
expressed by the factorizations in (7) and (21), is ruled
out by the linearity of the Liouville dynamics. Univer-
sal cloning machines (even if the statistical independence
of the source and target systems is not required) are in-
compatible with the conservation of the Kullback-Leibler
information associated with pairs of solutions of the Liou-
ville equation. Only in special circumstances, as when
dealing with 6 distributions, the copying process becomes
possible.
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