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We derive a single general Bell inequality which is a sufficient and necessary condition for the cor-
relation function for N particles to be describable in a local and realistic picture, for the case in which
measurements on each particle can be chosen between two arbitrary dichotomic observables. We also
derive a necessary and sufficient condition for an arbitrary N-qubit mixed state to violate this inequality.
This condition is a generalization and reformulation of the Horodecki family condition for two qubits.
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Local realism imposes constraints on statistical corre-
lations of measurements on multiparticle systems. They
are in the form of Bell-type inequalities [1–8]. In a re-
alistic theory the measurement results are determined by
“hidden” properties the particles carry prior to and in-
dependent of observation. In a local realistic theory the
results obtained at one location are independent of any
measurements, or actions, performed at spacelike separa-
tion. Quantum mechanics predicts violation of these con-
straints. This is known as Bell’s theorem [1].

However, the problems, (a) what are the most general
constraints on correlations imposed by local realism and
(b) which quantum states violate these constraints, are still
open. The latter has been solved in general only in the
case of two particles in pure states [9,10] and for two-
qubit mixed states [11]. Only recently bounds for local
realistic description of a higher-dimensional system have
been found in some simple cases [12–14].

Here the answer to the two long-standing questions (a)
and (b) is presented for the case of a standard Bell type
experiment on N qubits. By a standard Bell experiment we
mean one in which each local observer is given a choice be-
tween two dichotomic observables. We first derive a single
general Bell inequality that summarizes all possible local
realistic constraints on the correlation functions for a
N-particle system. From this inequality one obtains as
corollaries the Clauser-Horne-Shimony-Holt (CHSH)
inequality [2] for two-particle systems and the Mermin-
Ardehali-Belinskii-Klyshko (MABK) inequalities for N
particles [4–6]. We show that the correlation functions
in a standard Bell experiment can be described by a local
realistic model if and only if the general Bell inequality is
satisfied. Therefore the general Bell inequality is a suf-
ficient and necessary condition for correlation functions,
in such an experiment, to be describable within a local
realistic model. We also find a necessary and sufficient
condition for correlation functions for N qubits in an
arbitrary (mixed) quantum state to violate the general
Bell inequality in direct measurements. This condition is
generalization and reformulation of the one given by the
Horodecki family [11] for two qubits.
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These results are not only of importance from the fun-
damental point of view, but also as a research towards
identifying ultimate resources for quantum information
processing. Recently it was shown [15] that there is a
direct link between the security of the quantum commu-
nication protocols and the violation of Bell inequalities.

We shall now derive the general Bell inequality. Con-
sider N observers and allow each of them to choose be-
tween two dichotomic observables, determined by some
local parameters denoted here �n1 and �n2. We choose such
a notation of the parameters for brevity; of course, each ob-
server can choose independently two arbitrary directions.
The assumption of local realism implies the existence of
two numbers Aj� �n1� and Aj� �n2� each taking values 11 or
21, which describe the predetermined result of a measure-
ment by the jth observer of the observable defined by �n1
and �n2, respectively (we do not discuss stochastic hidden
variable models, as they always can be constructed from
underlying deterministic ones). In a specific run of the ex-
periment the correlations between all N observations can be
represented by the product

QN
j�1 Aj� �nkj

�, with kj � 1, 2.
The correlation function, in the case of a local realistic the-
ory, is then the average over many runs of the experiment

E�k1, . . . ,kN � �

*
NY

j�1
Aj� �nkj �

+
avg

. (1)

The following algebraic identity holds for the predeter-
mined results:X
s1,...,sN �61

S�s1, . . . , sN �
NY

j�1

�Aj� �n1� 1 sjAj� �n2�� � 62N ,

(2)

where S�s1, . . . , sN � stands for an arbitrary function of the
summation indices s1, . . . , sN [ �21, 1�, such that its val-
ues are only 61, i.e., S�s1, . . . , sN � � 61. To prove this
identity, note that, since Aj� �n� � 61, for each observer
j one has either jAj� �n1� 1 Aj� �n2�j � 0 and jAj� �n1� 2

Aj� �n2�j � 2 or the other way around. Therefore, for all
sign sequences of s1, . . . , sN the product

QN
j�1�Aj� �n1� 1

sjAj � �n2�� vanishes except for just one sign sequence, for
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which it is 62N . If one adds up all such 2N products, with
an arbitrary sign in front of each of them, the sum is al-
ways equal to the value of the only nonvanishing term; i.e.,
it is 62N .
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After averaging the expression (2) over the ensemble of
the runs of the experiment [compare Eq. (1)], one obtains
the following set of Bell inequalities:
É X
s1,...,sN �21,1

S�s1, . . . , sN �
X

k1,...,kN �1,2

s
k121
1 · · · s

kN 21
N E�k1, . . . , kN�

É
# 2N . (3)
Since there are 22N
different functions S�s1, . . . , sN �, the

inequalities (3) represent a set of 22N
Bell inequalities

for the correlation functions. Many of these inequalities
are trivial. For example, when the choice for the func-
tion is S�s1, . . . , sN � � 1 for all arguments, we get the
condition E�1, 1, . . . , 1� # 1. Specific other choices give
nontrivial inequalities. For example, for S�s1, . . . , sN � �p

2 cos�2p

4 1 �s1 1 · · · 1 sN 2 N� p

4 � one recovers the
MABK inequalities, in the form derived by Belinskii and
Klyshko [6]. Specifically, for N � 2, the well known
CHSH inequality [2] follows. For N � 3, one obtains the
inequality

jE�1, 2, 2� 1 E�2, 1, 2� 1 E�2, 2, 1� 2 E�1, 1, 1�j # 2 .

(4)

Inequalities, like the one above, with the minus sign at a
different location and/or measurements 1 and 2 permuted,
form together an equivalence class.

The full set of all 22N
inequalities (3) is equivalent to the

single general Bell inequality [16–18]

X
s1,...,sN �21,1

É X
k1,...,kN �1,2

s
k121
1 · · · s

kN 21
N E�k1, . . . ,kN �

É
# 2N .

(5)

The equivalence of (5) and (3) is evident, once one recalls
that for real numbers one has ja 1 bj # c and ja 2 bj #

c if and only if jaj 1 jbj # c, and writes down a general-
ization of this property to sequences of an arbitrary length.

Thus far we have shown that when a local realistic model
exists, the general Bell inequality (5) follows. The con-
verse is also true: whenever inequality (5) holds one can
construct a local realistic model for the correlation func-
tion, in the case of a standard Bell experiment. This es-
tablishes the general Bell inequality (5) presented above
as a necessary and sufficient condition for a local realistic
description of N particle correlation functions in standard
Bell-type experiments. This is why one can claim that the
set of Bell inequalities (3) is complete.

The proof of the sufficiency of condition (5) will be done
in a constructive way. A local realistic theory must ascribe
certain probabilities to every possible set of predetermined
local results. Just as if the local measuring stations were
receiving instructions, what should be the measurement re-
sults for (here) two possible settings of the local apparatus?

One can ascribe to the set of predetermined local results,
which satisfy the following conditions Aj� �n1� � sjAj� �n2�,
the hidden probability:

p�s1, . . . , sN � �
1

2N

É X
k1,...,kN�1,2

s
k121
1

· · · s
kN 21
N E�k1, . . . , kN �

É
, (6)

and one can demand that the product
QN

j�1 Aj� �n1� has the
same sign as that of the expression inside of the modulus
defining the p�s1, . . . , sN �. In this way every definite set
of local realistic values is ascribed a unique global hidden
probability. However, if the inequality (5) is not saturated,
the probabilities add up to less than 1. In such a case, the
“missing” probability is ascribed to an arbitrary model of
local realistic noise (e.g., for which all possible products
of local results enter with equal weights). The overall
contribution of such a noise term to the correlation function
is nil. In this way we obtain a local realistic model of a
certain correlation function.

However, one should check whether this construction
indeed produces the model for the correlation function for
the set of settings that enter inequality (5), that is, for
E�k1, . . . , kN �. For simplicity take N � 2. One can build a
“vector” ���E�1, 1�, E�1, 2�, E�2, 1�, E�2, 2���� out of the values
of the correlation function. The expansion coefficients of
this vector in terms of the four orthogonal basis vectors
�1, s1, s2, s1s2� (recall that s1, s2 [ �21, 1�) are equal to
the expressions within the moduli entering inequality (5).
By the construction shown above the local realistic model
for N � 2 gives the following vector:
���ELR�1, 1�, ELR�1, 2�, ELR�2, 1�, ELR�2, 2���� �
1
4

X
s1,s2�21,1

" X
k1 ,k2�1,2

s
k121
1 s

k221
2 E�k1,k2�

#
�1, s1, s2,s1s2� . (7)
Since the vector built out of the correlation function values
and its local realistic counterpart have the same expansion
coefficients in the basis, they are equal. Thus, the suffi-
ciency of (5) as a condition for the existence of a local
realistic model is proven. The generalization to an arbi-
trary N is obvious.
Quantum mechanical predictions can violate the
inequality (5). Simply, if a MABK inequality is vio-
lated, then the general inequality, which also includes
the MABK inequalities, is violated too. However, the
converse statement is not always true. The new inequality
is more restrictive. In the problem of identifying quantum
210401-2
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states of highly nonclassical traits, it is important to find
the class of quantum states, which are not describable by
local realistic models. We will now derive the necessary
and sufficient condition for an arbitrary (pure or mixed)
quantum state to violate the general Bell inequality (5).

An arbitrary mixed state of N qubits can be written down
as

r �
1

2N

3X
x1,...,xN �0

Tx1···xN s1
x1

≠ · · · ≠ sN
xN

, (8)

where s
j
0 is the identity operator in the Hilbert space of

qubit j, and s
j
xj are the Pauli operators for three orthogonal

directions xj � 1, 2, 3. The set of real coefficients Tx1···xN ,
with xj � 1, 2, 3 forms the so-called correlation tensor T̂ .
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The correlation tensor fully defines the N-qubit correlation
function:

EQM�k1, . . . , kN � � Tr�r� �nk1
? �s ≠ · · · ≠ �nkN

? �s��

(9)

�
3X

x1,...,xn�1

Tx1···xN � �nk1 �x1 · · · � �nkN �xN ,

(10)

where � �nkj
�xj

are the three Cartesian components of the
vector �nkj

. For convenience we shall write down the last
expression (10) in a more compact way as �T̂ , �nk1 ≠ · · · ≠
�nkN 	, where �. . . , . . .	 denotes the scalar product in R3N .

We now insert the quantum correlation function
EQM�k1, . . . , kN � into the Bell inequality (5), and obtain
X
s1,...,sN �21,1

É *
T̂ ,

2X
k1�1

s
k121
1 �nk1 ≠ · · · ≠

2X
kN �1

s
kN21
N �nkN

+ É
# 2N . (11)
This inequality can be simplified. For each observer there
always exist two mutually orthogonal unit vectors �a

j
1 and

�a
j
2 and the angle aj such that

P2
kj�1 �nkj � 2 �a

j
1 cos�aj 1

p

2 � and
P2

kj�1�21�kj �nkj � 2 �a
j
2 cos�aj 1 p�. Using the

notation cj
xj

� cos�aj 1 xj
p

2 �, one can write the inequal-
ity (11) as

2X
x1,...,xN �1

jc1
x1

· · · cN
xN

�T̂ , �a1
x1

≠ · · · ≠ �aN
xN

	j # 1 . (12)

One can transform this inequality into
2X

x1,...,xN �1
c1

x1
· · · cN

xN
jTx1···xN j # 1 , (13)

where Tx1···xN is now a component of the tensor T̂ in a new
set of local coordinate systems, which among their basis
vectors have �a

j
1 and �a

j
2. The two vectors serve as the unit

vectors which define, say, the local directions x and y. The
values of cj

xj
enter (13) directly, not as moduli, because

without this constraint the maximal value of the left hand
side does not change.

We conclude from the above reasoning that the neces-
sary and sufficient condition for an arbitrary N-qubit state
to satisfy the general Bell inequality (5) can be put in the
following way. The correlations between the measure-
ments on N qubits satisfy inequality (5) if and only if in
any set of local coordinate system of N observers, and for
any set of unit vectors �cj � �cj

1,c
j
2� one has

Tmod
c1···cN



2X

x1,...,xN �1

c1
x1

· · · cN
xN
jTx1···xN j # 1 . (14)

Let us give a geometric interpretation of (14). Sup-
pose one replaces the components of the correlation tensor
Tx1···xN by their moduli jTx1···xN j, and builds of such moduli
a new tensor T̂mod. Suppose, moreover, one transforms this
modified tensor into a new set of local coordinate systems,
each of which is obtained from the old one by a rotation
within the plane spanned by axes 1 and 2 of the initial co-
ordinates. If this new tensor satisfies constraint (14) for an
arbitrary choice of the initial set of local coordinate sys-
tems, then, and only then, a local realistic description of
correlation function is possible, in the case of any standard
Bell experiment.

In other words, Tmod
c1···cN

is a component of Tmod along
directions defined by the unit vectors �cj , j � 1, . . . , N . If
the condition (14) holds, then the transformed components
T̂mod

c1···cN
do not have values larger than 1. Only then can

they describe products of local results, which are only of
the values 61, as it is for any correlation tensor. One there-
fore can express the condition (14) as follows: within local
realistic description T̂mod is also a possible correlation ten-
sor. This bears a similarity with the Peres [19] necessary
condition for separability (a partially transposed density
matrix is a possible density matrix). Note that (14) could
also be put in yet another way: arbitrary changes of the
signs of some of the coordinates of T̂ still leave it as a
possible correlation tensor.

By applying the Cauchy inequality to the middle term
of expression (14) one obtains directly the following use-
ful and simple sufficient condition for the local realistic
description of the correlation functions for N qubits. If in
any set of local coordinate systems of N observers

2X
x1,...,xN �1

T2
x1···xN

# 1 , (15)

then the correlations between the measurements on N
qubits satisfy the general inequality (5).

By performing rotations in the planes defined by direc-
tions 1 and 2 of each of the N observers, one can vary the
values of the elements of the correlation tensor, but these
variations do not change the left-hand side of inequality
(15). In this way, one can find local coordinate systems
for which some of the correlation tensor elements vanish.
Thus the criterion (15) can involve a smaller number of
them (compare the three qubit case in Ref. [20]).

There are special situations for which (15) turns out
to be both the necessary and sufficient condition for
correlation functions to satisfy the general Bell inequality
210401-3



VOLUME 88, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 27 MAY 2002
(5). Formally this arises whenever the two vectors
�c1

1 · · · cN
1 , . . . ,c1

2 · · · cN
2 � and jT11···1j, . . . , jT22···2j in (13)

are parallel. Only then, since the first vector has a unit
norm, does the expression on the left hand side of (13)
reach the one on the left hand side of (15), and thus the
conditions (13) and (15) are equivalent ones.

Let us consider two examples of application of our
results. We first study an arbitrary two-qubit state
to recover the Horodeckis’ condition [11]. In this
case, since the two vectors �jT11j, jT12j, jT21j, jT22j� and
�c1

1c2
1, c1

1c2
2, c1

2c2
1, c1

2c2
2� in (13) can be made parallel by

a suitable choice of free parameters, Eq. (15) is the nec-
essary and sufficient condition for the violation of local
realism. Two of the parameters come from the arbitrari-
ness in selecting the two local coordinate systems (i.e.,
they come from arbitrary transformation of the correlation
tensor by rotations within 1–2 planes of each of the two
local coordinate systems). Two more parameters are the
two angles aj which define the second vector. Therefore
the condition reads T2

11 1 T2
12 1 T2

21 1 T 2
22 # 1. In

addition, one can always find local coordinate systems
such that T12 � T21 � 0 and our condition transforms
into T2

11 1 T2
22 # 1. This is equivalent to the Horodeckis’

condition [11], as T 2
11 and T2

22 for the diagonalized cor-
relation tensor are equal to two eigenvalues of the matrix
T̂T T̂ , where T̂T is the transposed T̂ .

As another example, we consider the Werner states.
Such states have the form rW � V jcGHZ	 �cGHZj 1

�1 2 V �rnoise, where jcGHZ	 �
1
p

2
�j0	1 · · · j0	N 1

j1	1 · · · j1	N � is the maximally entangled (GHZ) state [3]
and rnoise � I�2N is the completely mixed state. Here
the weight V of the GHZ state can operationally be
interpreted as the interferometric contrast observed in a
multiparticle correlation experiment. The nonvanishing
components of the correlation tensor in the xy planes for
the Werner state are the components which contain an
even number of y’s and Txx···x. There are altogether 2N21

of them. Their values are either 1V or 2V . Since again
the two vectors in (13) can be made parallel, Eq. (15) is
the necessary and sufficient condition for the violation of
local realism. Indeed, if one rotates all but one of the local
coordinate systems by 45±, then all 2N components of
the vector �jT11···1j, . . . , jT22···2j� become equal to V�

p
2.

Furthermore, if one chooses all aj equal to 2p�4, the
unit vector �c1

1 · · · cN
1 , . . . , c1

2 · · · cN
2 � has all its components

equal to 1�
p

2N . Therefore, the two vectors are parallel.
Thus, using criterion (15) we conclude that the correla-
tion functions for the Werner state definitely cannot be
described by local realism if and only if V . 1�

p
2N21.

More applications of the formalism, leading to some
unexpected results, are given in [21]. There a family of
pure entangled states is found, which do not violate any
210401-4
Bell inequality for correlation functions, for the standard
Bell experiment.

It will be interesting to see generalizations of the cri-
teria for violation of local realism to the cases of higher-
dimensional systems than qubits and to more measurement
choices for each observer than two. One can expect in
such cases even stronger restrictions for the local realistic
description [22].
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Phys. Rev. A 64, 010102(R) (2001).
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