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We show that electrostatic effects have a dramatic influence on thermal diffusion of charged micelles.
In the dilute regime, the Soret coefficient strongly decreases with the solution ionic strength, and scales
as the square of the Debye-Hückel length. Yet, collective effects yield a reversed scenario even at fairly
low surfactant concentration. We find that single-particle behavior can be explained using an interfacial
tension mechanism proposed by Ruckenstein, which also fairly accounts for collective effects and opens
the way to a general picture of thermal diffusion in disperse systems.
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The presence of a thermal gradient in a fluid mixture
induces a relative matter flow of the components known
as thermal diffusion or Ludwig-Soret effect [1]. This
cross-flow effect plays a crucial role in many naturally oc-
curring processes ranging from thermohaline convection in
oceans [2] to component segregation in solidifying metal-
lic alloys [3] or volcanic lava [4], and set the scene for
giant fluctuations in nonisothermal mixtures [5]. Ther-
mophoresis, a closely akin process consisting in the drift
of dispersed particles due to a thermal gradient, can seri-
ously affect semiconductor manufacturing and contribute
to ambient pollution through airborne particle deposition
[6,7]. Although known for a long time and clearly framed
in terms of nonequilibrium thermodynamics concepts [8],
the Soret effect still lacks, however, a general microscopic
picture; and attempts to go beyond a phenomenological de-
scription have had thus far limited success. For instance,
in most cases the denser component of a binary mixture
diffuses towards the colder region (this is conventionally
called positive Soret effect), but examples of reverse be-
havior are common, and no model is thus far able to give
a general prediction of the direction of thermodiffusive
motion. Some years ago, Ruckenstein [9] proposed an
explanation of thermophoresis in dispersions based on an
interfacial-tension driven mechanism. In this Letter, we
show that charged colloidal dispersions represent a particu-
larly fit system to test in a quantitative way the Ruck-
enstein model. We find that the model describes very
well our experimental results, taking into account not only
single-particle behavior, but also the effects of interpar-
ticle interactions. This opens the way to a general picture
of thermophoretic effects in colloidal suspensions.

The mass flow Jm of a solute in the presence of thermal
diffusion can be written as [8]

Jm � 2d�D=w 2 w�1 2 w�DT =T� , (1)

where d is the material density of the solution, w is the
mass fraction of the solute, D is the mass diffusion coef-
ficient, and the phenomenological quantity DT is called
the coefficient of thermal diffusion. The ratio of ther-
mal to “ordinary” diffusion is called the Soret coefficient
ST � DT �D. It is also useful to introduce the thermal
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diffusion ratio kT � Tw�1 2 w�ST , which is a pure num-
ber. Typical values of ST range between 0.001 0.01 K21

for gases or simple electrolytes [1], but can be several or-
ders of magnitude larger for macromolecular and colloidal
solutions.

After the seminal study by Giglio and Vendramini [10],
thermal diffusion in complex fluids has been only mar-
ginally explored, outstanding exceptions being detailed
studies of polymer solutions [11], where scaling concepts
considerably help, and recent investigations of ferrofluids
[12]. Here we present a detailed study of thermal diffu-
sion in charged micellar solutions, showing that Ruck-
enstein’s model yields a quantitative prediction of the
electrostatic contribution to ST . We have chosen to work
on micellar solutions of the ionic surfactant sodium dode-
cyl sulphate (SDS), whose equilibrium structural and dy-
namic properties have been studied at length in the past.
In particular, SDS micelles are spherical aggregates of ra-
dius R � 2.5 nm, interacting via a standard DLVO poten-
tial [13]. We will show that thermal diffusion in SDS
solutions has a very distinctive behavior. In the limit of
very low concentration, ST sensibly drops by adding salt.
In other words, the single-particle Soret effect strongly
increases with the electrostatic Debye-Hückel screening
length. However, intermicellar interactions play a strongly
conflicting role, to such an extent that even at moderately
low SDS concentration the situation gets totally reversed,
and ST increases with increasing salt concentration.

We have used a simple but reliable experimental method
first developed by Giglio and Vendramini [10], which ex-
ploits the deflection of a laser beam due to the concen-
tration, and therefore refractive index gradient induced by
the imposed temperature field. A schematic description of
our apparatus is the following. The thermal diffusion cell
is made of two horizontal closely spaced plates separated
by a rectangular 5 mm thick optical-glass frame. Plates
are thin gold-plated copper blocks, with milled grooves
where the optical window is partially inserted to ensure
good thermalization and avoid boundary convection. The
variable compression of thin gaskets allows controlling,
via an external gauge, plate parallelism and separation,
which has been fixed to h � 0.75 mm. The cell has an
© 2002 The American Physical Society 208302-1
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optical path length of 40 mm and a sample volume of
about 300 ml. The plate temperature is separately con-
trolled by two Peltier elements, and a temperature differ-
ence �T � 0.5 2 1 ±C is imposed on a time scale of a few
tenths of a second between the initially isothermal plates
by cooling from the bottom. �T is then kept fixed within
a few mK up to several hours. A He-Ne laser beam is
mildly focused through the plate gap, and the transmitted
beam position is monitored by a position-sensitive detec-
tor with a resolution of a few mm, placed at 60 cm from
the cell.

The inset of Fig. 1 shows a typical beam deflection
signal Dz�t�. The beam suffers first a very rapid down-
ward deflection �Dz�th due to the temperature dependence
≠n�≠T of the solvent refractive index, followed by a much
slower change DzS�t� due to thermal diffusion, eventually
leading to a steady-state deflection �Dz�th 1 �Dz�S. The
time dependence of the thermal diffusion contribution is
given by

DzS �t� � �Dz�S

∑
1 2

4
p

exp

µ
2

t
t

∂∏
, (2)

where t � h2�pD. This expression is valid for t . t�3
[14]. For SDS micelles and the given plate spacing t �
103 s. The wide separation of time scales allows one to
extract therefore both the dynamics and the steady-state
value of the Soret effect. The thermal diffusion ratio is
simply determined as

kT �
1
T

≠n�≠T
≠n�≠w

��z�S

��z�th
, (3)

0

50

100

0 10 20
c (g/l)

1/
S

T
(K

) -3

-2

-1

0

0 1000 2000
t (s)

∆z
(t

) 
(m

m
)

FIG. 1. Reciprocal Soret coefficient S21
T versus SDS concen-

tration in the presence of 10 ���, 20 ���, 50 ���, 200 ���, and
500 mM�l ��� added NaCl. Lines are fits to Eq. (4). Inset:
Beam displacement for a 15 mg�ml SDS solution at 400 mM�l
NaCl concentration.
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where ≠n�≠w gives the concentration dependence of the
refractive index. It is interesting to notice that Eq. (3)
yields an internal calibration with no reference to the ap-
paratus geometry once ≠n�≠T and ≠n�≠w are known.

We have studied thermal diffusion effects in SDS solu-
tions at a fixed upper plate temperature of 25 ±C by varying
the surfactant concentration between 2.5 25 g�l (equiva-
lent to w � 0.25% 2.5%, since SDS density is very close
to 1 g�l) and the concentration cS of added NaCl between
10 mM�l and 0.5 M�l. It must be noticed that SDS criti-
cal micellar concentration (cmc) is not totally negligible
at low ionic strength, reaching up to 1.5 g�l at 10 mM�l
NaCl. In the present Letter, we will always refer to the
concentration c of SDS in micellized form, obtained for
each value of cS by subtracting from the total SDS con-
centration the cmc values reported in [15]. For each value
of cS , we found a reasonably wide concentration range
where the Soret coefficient scales as the reciprocal of the
micellar concentration. In Fig. 1, we show S21

T versus c
for some values of cS , fitting therefore its concentration
dependence as

S21
T � S21

T0 �1 1 kSc� . (4)

Figure 1 has the following two remarkable features.
(i) The intercept S21

T0 , giving the single-particle behav-
ior, grows more than tenfold by increasing the salt concen-
tration from 10 to 500 mM/l. This means that the Soret
coefficient increases very rapidly by reducing the ionic
strength, and witnesses the dominant role of the electro-
static contribution to thermal diffusion.

(ii) Collective effects, however, strongly modify the di-
lute behavior. For instance, at 10 mM NaCl, ST decreases
fivefold by increasing SDS concentration from 0.5 to 2.5%.
Since the intercept and slope of the fit show an opposite
trend as a function of cS , the dependence of ST on the ionic
strength actually reverses compared to the infinite dilution
limit for c . 10 mg�ml.

To our knowledge, neither such a huge effect of the
ionic strength on the Soret effect for charged colloids, nor
the strong corrections due to interparticle interactions have
thus far been reported.

We first discuss the single-particle behavior. Figure 2
displays the dependence of ST0 on the Debye-Hückel
screening length lDH �

p
ekBT��2e2�cS 1 cmc��, and

shows that ST0 grows approximately as l
2
DH. In order

to account for this scaling behavior, we recall that the
electrostatic contribution to the interfacial tension between
a charged colloidal particle and a solvent of dielectric
constant e is given, for low surface potential cs, by
gel � 2ec2

s �8plDH. Since lDH depends on T , a ther-
mal gradient will induce an effective interfacial tension
gradient =g due to the unbalance of the electric stresses on
the particle, which we shall assume to be the main source
of thermophoretic motion. In simple words, we could say
that particle redistribution takes place in order to minimize
the interfacial free energy. This mechanism, which has
208302-2
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been originally proposed by Ruckenstein [9], is closely
related to thermocapillarity, that is, mass transfer due a
temperature-dependent interfacial tension. More gen-
erally, Ruckenstein has shown that the stationary drift
velocity U induced by an electric potential, ion concentra-
tion, or thermal gradient can be written in fairly general
conditions as U � 2l=g�h, where h is the viscosity of
the solution and l is a characteristic length of the order of
lDH. In particular, the “thermophoretic” velocity UT0 in
the absence of interparticle interactions is found to be [9]

UT0 � 2
ec

2
S

32phT
=T . (5)

Unfortunately, this expression is valid only for small cS .
It is, however, well known that the Debye-Hückel linear
approximation can describe many structural and dynamic
properties of a colloidal suspension also for cS ¿ kBT ,
provided that an effective charge Zeff is used instead of
the “bare” charge Z [17]. This is due to the fact that part
of the counterions “recondense” in a thin layer of thickness
d near the particle surface, lowering the surface potential
to values of the order of kBT . Counterion condensation in
micellar solutions has been numerically studied by Belloni
[18], who found a layer thickness d � 1 nm for polyions
of radius 2.5 nm, and experimentally tested for SDS mi-
celles in [16]. We shall therefore assume that Eq. (5) can
be maintained, provided that instead of Z we use the effec-
tive charge Zeff. Using in this limit cS � ZeffelDH�ea2,
where a is the particle size and e the unit charge, we have

UT0 � UNE 2
3pkBZ2

efflBl
2
DH

4f0a3
=T , (6)
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FIG. 2. Single-particle Soret coefficient ST0 as a function
of the Debye-Hückel screening length. The full line is the
prediction of Eq. (7)using the value of Zeff obtained in [16],
and including in the micellar radius the layer of condensed
counterions.
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where lB � e2�4pekBT is the Bjerrum length,
f0 � 6pha is the Stokes friction coefficient, and
UNE is a possible contribution to thermophoresis due to
particle-solvent interactions of nonelectrostatic nature.
The Soret coefficient can then be easily found by setting
to zero the net particle flux J � rUT 2 D=r, where r is
the particle number density. Using D0 � kBT�f0 for the
single-particle diffusion coefficient, we obtain therefore

ST0 � SNE 1
3plBZ2

4Ta3
l2

DH , (7)

where SNE is the ionic-strength independent term coming
from UNE. Equation (7) predicts therefore a dependence of
ST0 on lDH which agrees with the observed scaling behav-
ior. The amplitude of the quadratic term, evaluated by us-
ing the bare micellar radius and the effective charge value
Zeff � 17 obtained in [16], is, however, more than twice
the experimental value. On the other hand, if we include
in the particle size the layer of condensed counterions by
putting a � R 1 d and use SNE as the only free parame-
ter, we get the full curve shown in Fig. 2, which closely
fits the data. A sounder agreement might possibly be ob-
tained by using recent calculations of UT0 from the full
Poisson-Boltzmann equation, which take also into account
effects due to the thermal conductivity mismatch between
particle and solvent [19]. Unfortunately, analytical results
can be found only in the limit of lDH � 0.

The aforementioned model also yields some clues for an
interpretation of collective effects. According to the data
in Fig. 1, ST decreases with c for cS # 0.4 M�l, while
the contrary happens for cS � 0.5 M�l. Light scattering
data for the osmotic compressibility ≠P�≠c of SDS solu-
tions show that micellar interactions switch from repulsive
to attractive for cS * 0.45 M�l [13]. Therefore, an intu-
itive explanation of collective effects is that repulsive or
attractive interactions, respectively, tend to hinder or favor
the buildup of concentration gradients. Could this rela-
tion between ST and ≠P�≠c be more than qualitative? In
order to account for interactions in the balance of diffu-
sive fluxes, we can write the diffusion coefficient in a gen-
eralized Stokes-Einstein form: D�r� � �≠P�≠c��f�r�,
where f�r� is a concentration-dependent friction coeffi-
cient. The thermophoretic velocity at finite concentration,
which we shall denote as UT , will also change both be-
cause of hydrodynamic interactions and since the “ther-
mocapillary” driving force could depend in principle on
c. Having no hints about the latter contribution, we tenta-
tively assume, however, that UT is modified only through
the same friction coefficient f�r� as UT � UT0f0�f�r�,
which therefore cancels out when evaluating steady-state
quantities. Taking into account the first order correction to
the ideal behavior by writing ≠P�≠c � kBT�1 1 2B2r�,
where B2 is the second osmotic virial coefficient, this ap-
proximation immediately yields

ST �r� � ST0��1 1 2B2r� , (8)
208302-3
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FIG. 3. Virial coefficient kS versus solution ionic strength ���.
The line is the best fit to kS � AI21. Light scattering re-
sults for the virial coefficient of the osmotic compressibility
from Ref. [13] ���, with a few additional points at lower ionic
strength obtained in our lab ���, are shown for comparison.

meaning that the slope of the linear fit to the concentration
dependence of S21

T should be simply given by kS � 2B2.
The results for kS are plotted in Fig. 3 as a function of
the total ionic strength I � cS 1 cmc, and compared to
experimental virial coefficients for the osmotic compress-
ibility obtained by light scattering. The logarithmic plot
shows that, although numerically differing by an average
factor of about 2, both quantities roughly scale as I21.

We do not fully discuss in this paper the transient be-
havior of the Soret effect, but we simply point out that
the virial coefficients for the diffusion coefficient, derived
from fits to Eq. (2), are in close agreement with the results
by Corti and Degiorgio [13]. In particular, no specific scal-
ing of ST on D is found, at variance with what happens for
polymer solutions [11], where the quantity kT D is roughly
constant due to the predicted weak dependence of DT on
concentration [20].

Although still partially satisfactory, the simplified
model we propose seems nonetheless able both to pre-
dict the correct scaling and order of magnitude of the
electrostatic contribution to ST0, and to include semi-
quantitatively the effects of interactions. We regard
therefore Ruckenstein’s suggestion as very promising.
In particular, we find quite attractive the possibility of
“translating” the effect of the thermal inhomogeneity
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of the solvent into an effective mechanical disturbance.
This procedure could indeed be extended to particle-sol-
vent interactions of a different nature. For instance,
one could expect colloidal particles to move towards
the hot plate whenever the interfacial free energy is a
decreasing function of T . For specific solvation forces,
this contribution (embodied in SNE) could dominate,
yielding a rationale for the occurrence of “negative” Soret
coefficients.
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