
VOLUME 88, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 2002
Left-Handed Materials Do Not Make a Perfect Lens

N. Garcia1,* and M. Nieto-Vesperinas2,†

1Laboratorio de Fisica de sistemas Pequeños, Consejo Superior de Investigaciones Cientificas, Serrano 144, Madrid 28006, Spain
2Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco,

Madrid 28049, Spain
(Received 16 November 2001; published 3 May 2002)

By means of an analysis on evanescent waves in left-handed materials (LHM), we show that within
a slab of such a medium, sandwiched between two positive refraction media, there is amplification
of evanescent waves in ideal lossless, dispersiveless media; however, contrary to previous claims, this
is limited to a finite width of the slab so that it prevents their restoration and perfect focusing. We
illustrate this by considering their coupling to propagating waves through a tunnel barrier containing a
slab of LHM. Further, we show that the effect of absorption, necessarily present in such materials, may
drastically change any evanescent amplifying wave into a decaying one.
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The resolution of optical signal detection is limited to
half the wavelength l of the radiation in use. This is well
known to be due to the loss of evanescent components
of the wave field emanating from the object, as it propa-
gates up to the detection plane [1,2,3]. It has recently been
proposed [4], however, that a slab of left-handed mate-
rial (LHM), (i.e., of a medium with negative permittiv-
ity, permeability, and refractive index, initially discussed
by Veselago [5]) could restore such evanescent wave-field
components, being thus termed a perfect lens. The na-
ture of evanescent waves is subtle, nevertheless, and it is
easy to reach inconsistencies and divergencies that contra-
dict the basic mathematical properties of scattered wave
fields, specifically, radiation condition and square integra-
bility, which represent their behavior as spherical waves at
infinity and their finite energy, respectively. Such inconsis-
tencies, present in Ref. [4], have further lead to comments
[6] on [4], which we have also found to be either incom-
plete or incorrect.

We present in this Letter a detailed analysis of evanes-
cent waves in an ideal lossless and dispersionless LHM
with constitutive parameters whose values at a certain fre-
quency are opposite those of vacuum. Such parameters
were those for which the perfect lens was proposed. This
shows errors in the analysis of [4] as regards a LHM slab.
Also, we illustrate how absorption present in dispersive
left-handed metamaterials may change these modes from
amplifying into decaying.

The electric vector E of a wave field emanating from an
object, propagating in a source-free or homogeneous half
space, is well known to be represented by its angular spec-
trum A�kx , ky� of plane wave components of wave vector
k � �kx , ky , kz�, k2

x 1 k2
y 1 k2

z � �2p�l�2, [2,3,7]

E �r� �
Z `

2`
A�kx , ky� exp�ik ? r� dkx dky . (1)

This expression contains both propagating and evanes-
cent plane wave components. In what follows we shall
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focus our attention into each of those evanescent waves
E�kx , ky, r� � A�kx , ky� exp�ik ? r�. (From now on, un-
less explicitly stated, the kx , ky dependence of E will not
be included in the notation). Let E�i� be the electric field
of an evanescent component of an S-polarized electromag-
netic wave in the half space z , 0 occupied by vacuum,
incident on the plane z � 0 that limits a LHM, filling the
region z . 0, of dielectric permittivity 2e, magnetic per-
meability 2m, and refractive index 2n (e . 0, m . 0,
and n . 0). A time harmonic dependence exp�2ivt� will
be assumed throughout. We then choose the geometry such
that E�i��z # 0� � �A�i�, 0, 0� exp�iki ? r�.

With the wave vector ki � �0, ki
y, ki

z�, ki
z � 6iKi ,

Ki �
q

ki2
y 2 k2

0 , k0 � v�c � 2p�l. The sign of the
square root is discussed next.

The corresponding reflected and transmit-
ted waves E�r� and E�t�, respectively, are
E�r��z # 0� � �A�r�, 0, 0� exp�ikr ? r�, E�t��z $ 0� �
�A�t�, 0, 0� exp�ikt ? r�.

With wave vectors: kr � �0, ki
y , kr

z �, kt �

�0, 2nkt
y , 2nkt

z�; and kr
z � 6iKi, Ki �

q
ki2

y 2 k2
0 , and

kt
z � 6iKt, Kt �

q
kt2

y 2 k2
0 . Of course, A�i�, A�r�, and

A�t� are functions of ky . Matching conditions at z � 0:

�E�i�
x 1 E

�r�
x �z�0 � �E�t�

x �z�0 and ≠x�E�i�
x 1 E

�r�
x �z�0 �

�21�m�≠x�E�t�
x �z�0 impose that ki

y � 2nkt
y, which char-

acterizes negative refraction. As regards the signs of ki
z ,

kr
z , and kt

z , three kinds of modes may then be considered
in this system:

(i) E�i� and E�t� are both evanescent components, de-
caying as z ! 2` and as z ! `, respectively. When
E�r� is evanescent decaying as z ! 2`, then one must
choose: ki

z � 2iKi , kr
z � 2iKi , and kt

z � 2iKt. This
ensures that E�i�, E�r�, and E�t� are square integrable in k
space, and so are the corresponding fields E in r space.
A�r� � rA�i� and A�t� � tA�i�, r and t being the reflection
and transmission coefficients. As considered in Ref. [4],
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let us address the case in which at a certain frequency v

the LHM has e � m � n � 1, then Kt � Ki. Match-
ing conditions at z � 0 lead to the relationship between r
and t: 1 1 r � t. Thus, further constraints are required
to determine them. An important situation arises in the
choice of E�r� evanescent growing as z ! 2`, then, when
e � m � n � 1, one has that r � 0 and t � 1, i.e., no re-
flected wave, thus there being one evanescent wave at each
side of the interface: E�i��z # 0� � �A�i�, 0, 0� exp�iki

yy 1

Kiz�, decaying as z ! 2` in z , 0, and E�t��z $ 0� �
�A�i�, 0, 0� exp�iki

yy 2 Kiz�, decaying as z ! ` in z . 0.
(ii) E�i� is evanescent growing as z ! 2`, E�t� is

evanescent decaying as z ! `, and E�r� is evanescent
decaying as z ! 2`. This is the situation initially
considered in Ref. [4]. Then, one must choose ki

z � iKi,
kr

z � 2iKi , and kt
z � 2iKt . It should be noticed, how-

ever, that at fixed ky , A�i� cannot be a constant in this
case, as assumed in Ref. [4], since then E�i� would be
unbounded in its definition domain: z , 0, as it increases
without limit as either z ! 2`, or at any given z , 0, as
ki

y ! `. Therefore, this choice for ki
z cannot correspond

to any physically realizable field [3,7], which should be
square integrable (see also [3,7–9]). Proper normalization
of E�i� now imposes to take the incident amplitude:
A�i� exp�2Kiz0�, and restrict the definition domain of E�i�

to the strip: 2z0 # z # 0. This makes sense physically,
as then E�i� represents an evanescent wave component,
created by some means (e.g., scattering or total internal
reflection) at z � 2z0. The case in which at a certain
frequency v the LHM has: e � m � n � 1, however,
now leads to divergent reflection and transmission coeffi-
cients, which excludes the possibility of transmission of
an evanescent wave into such a semi-infinite LHM.

(iii) E�i�, is evanescent growing as z ! 2`, E�r� is
evanescent decaying as z ! 2`, E�t� is evanescent grow-
ing as z ! `. Now, like in case (ii), proper normalization
of E�i� imposes that it be restricted to the strip 2z0 # z #

0, and has amplitude: A�i� exp�2Kiz0�. Then the match-
ing conditions at z � 0 yield r �

2mKi1Kt

2mKi2Kt
exp�2Kiz0�,

t �
22mKi

2mKi2Kt
exp�2Kiz0�.

If at a certain frequency v: e � m � n � 1,
then Kt � Ki and the coefficients become r � 0 and
t � exp�2Kiz0�. Therefore, the waves transmitted into
the LHM are

E�t��ky, y, z $ 0� � ���A�i��ki
y�, 0, 0���

3 exp�iki
yy 1 Ki�z 2 z0�� . (2)

Equation (2) shows that the evanescent wave compo-
nents transmitted into the LHM are now amplifying as z
increases, but since all objects are limited in space, the an-
gular spectrum A�i� decreases as ki

y ! 6` as an inverse
power of ki

y (obviously this is also true for the kx depen-
dence of A�i� if any other polarization were chosen) [3];
also as energy should be conserved, E �t��x, y, z $ 0� and
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E�t��ki
y ,y, z $ 0� must be square integrable in y and ki

y ,
respectively [3,8]. This and the radiation condition for E
as z ! ` imposes that z # z0. Namely, the waves given
by (2) exist only within a strip 0 # z , d, where d # z0,
in the LHM half space. Notice that this constraint for z
was not realized in the amplifying solution obtained inside
the LHM in Ref. [4]. Therefore, such a mode cannot ex-
ist in the LHM if d . z0, and in that case the evanescent
component transmitted into z . 0 must be zero, which
implies that t � 0 and r � 2 exp�2iKiz0�. The physical
interpretation of all this is that the formation of a surface
state requires an infinite transient time and hence involves
infinite energy density when z . z0.

We shall next show that, since r � 0 when d # z0,
the transmitted mode (2) of a semi-infinite LHM, is also
the solution inside a LHM slab of width d # z0 that at a
certain frequency v has e � m � n � 1. Let this layer
be embedded in vacuum, limited by the planes z � 0 and
z � d, and let an evanescent wave decaying as z ! 0 in
z , 0 be incident on the interface at z � 0. One then
has in each of the three regions: E�2z0 # z # 0� �
�A�i�, 0, 0� exp�iki

yy 2 Ki�z 1 z0�� 1 �rA�i�, 0, 0� 3

exp�iki
yy 1 Kiz�, E�0 # z # d� � �A, 0, 0� exp�iki

yy 2

Kiz� 1 �B, 0, 0� exp�iki
yy 1 Kiz�, E�z $ d� � �tA�i�,

0, 0� exp�iki
yy 2 Kiz�.

Where r and t are the reflection and transmission co-
efficients at z � 0 and z � d, respectively, and A and B
depend on ky . The incident evanescent wave in z , 0 has
been normalized again to exp�2Kiz0� and, as before, it is
restricted to the strip 2z0 # z # 0 in order to ensure that
it be square integrable. The matching conditions at z � 0
and z � d give r � A � 0, B � A�i� exp�2Kiz0�, and
t � A�i� exp�Ki�2d 2 z0��. Hence, the resulting waves in
each of the three regions are the following: E�2z0 # z #

0� � �A�i�, 0, 0� exp�iki
yy 2 Ki �z 1 z0��, E�0 # z #

d� � �A�i�, 0, 0� exp�iki
yy 1 Ki�z 2 z0��, and E�z $

d� � �A�i�, 0, 0� exp�iki
yy 2 Ki�z 1 z0 2 2d��. This, as

mentioned, shows that the wave E�0 # z # d� inside
the LHM is again as in Eq. (2). Its proper normalization
imposes once again that d # z0, otherwise this wave func-
tion will be zero. Hence there is no transmitted evanescent
component inside the LHM slab when d . z0. Notice that
the current density that characterizes the energy transport
along OY for each evanescent component inside the slab
diverges when z . z0 as: Jy � Cki

y exp�2Ki�z 2 z0��, C
being a constant.

As in case (iii) before, a width d � 2z0 would imply a
wave function E�ki

y, 0 # z # d� inside the slab containing
a factor exp�Ki�z 2 z0�� that prevents it from being square
integrable in ki

y at values of z: z . z0. Hence, the exit
of the slab z � d is at best (i.e., when d � z0) equiva-
lent to the plane z � 2z0 at which the evanescent wave
was created. It should also be remarked that, contrary to
the results of [4], there are no multiple reflections within
the LHM slab, simply because as shown, the reflection
coefficients r are zero.
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As an illustration, we use the following example: con-
sider an object at z � 2z0, consisting of two spikes sepa-
rated a distance 2y0 from each other, from which the wave
field, given by Eq. (1), propagates towards increasing z.
Its angular spectrum is therefore: 2 cos� y0ky�, notice that
those two peaks may have a finite width rather than being
two d functions, then modeling them by two rectangular
functions of width b , y0, the former angular spectrum
would be multiplied by 2 sin�bky��ky. At any point 0 #

z # d, each x-plane wave component of E is Ex�ky , 0 #

z # d� � 2 cos� y0ky� exp�ikz�z 2 z0�� exp�ikyy�. There-
fore, inside the slab:

Ex� y, 0 # z # d� � 2
Z `

2`
cos� y0ky� exp�ikz�z 2 z0��

3 exp�ikyy� dky .

In the evanescent region, exp�ikz�z 2 z0�� �
exp�

q
k2

y 2 �2p�l�2�z 2 z0��. Thus the above inte-
gral diverges when z . z0, and hence it cannot represent
any physically realizable wave field. Notice that this also
happens if the two peaks have a finite width, since then the
corresponding angular spectrum 2 cos� y0ky�2 sin�bky��ky

decreases as k21
y when ky ! 6` which is slower than the

increase of the exponential exp�ikz�z 2 z0��. The same
happens for any other object, which should be limited in
space. (In particular, if the object were, e.g., a dipole
source, the angular spectrum would be proportional to
k21

z , which again decreases as k21
y when ky ! 6`).

Thus, if for instance, d � 2z0 as proposed in [4], since as
shown before, the evanescent modes do not exist within
the slab, the image of the two spikes at z � z0 1 d will
be Ex � y, z0 1 d� � sin��2p�l� � y 2 y0���� y 2 y0� 1

sin��2p�l� � y 1 y0���� y 1 y0�, namely, two peaks of
width l separated by a distance 2y0, which is the same
image as with an ideal conventional lens (infinite aperture
and no aberrations).

We now illustrate all the above with the effect of a
LHM slab on evanescent waves in a tunneling barrier
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between two dielectric semi-infinite media. This situation
is relevant since ultimately, in the detection process,
evanescent waves have to couple into propagating waves
at a certain interface. The system to study is then
composed of five regions: the space 0 , z # a and
a 1 d , z # 2a 1 d are air gaps, and a , z # a 1 d
is occupied by the LHM that at a certain frequency v has:
e � m � n � 1. The dielectric semi-infinite regions are
z , 0 and z . 2a 1 d, respectively. Let us consider
one of the plane propagating components of a wave field
E that is incident on z � 0 from the first dielectric
medium of refractive index nd . 0 in z , 0. There-
fore, in this medium, the wave function is E�z # 0� �
�A�i�, 0, 0� exp�iki ? r� 1 �rA�i�, 0, 0� exp�ikr ? r�, where

ki � �0, ki
y, ki

z�, ki
z �

q
k2

0n2
d 2 ki2

y .
And the transmitted wave into the second dielectric

medium is E�z $ 2a 1 d� � �tA�i�, 0, 0� exp�iki ? r�.
Matching conditions at the interfaces, denoting K �q
ki2

y 2 k2
0 , lead to the reflection and transmission coef-

ficients r and t:

t �
4iKki

z exp�2iki
z�2a 1 d�� exp�K�d 2 2a��

�K 1 iki
z�2 exp�2K�d 2 2a�� 2 �K 2 iki

z�2 , (3)

r �
�ki2

z 1 K2��1 2 exp�2K�d 2 2a���
�K 1 iki

z�2 exp�2K�d 2 2a�� 2 �K 2 iki
z�2

. (4)

Of course, when d � 0, Eqs. (3) and (4) become those
of t and r for the usual tunnel effect in an air gap of width
2a. Also, notice that when d � 2a then t � 1 and r � 0.
At first sight, this seems to support the results of Ref. [4].
However, when the width d of the LHM slab is larger
than that of the air gap a, although the current density of
energy transport along OZ remains conserved, the current
density parallel to the interfaces, i.e., along OY , becomes
unbounded, as before, as d increases, or at fixed d, as K
increases. This is seen at once from the wave function
inside the LHM slab, which reads
E�a # z # a 1 d� � �A�i� exp�iki
yy�, 0, 0�

2iki
z

�K 1 iki
z�2 exp�2K�d 2 2a�� 2 �K 2 iki

z�2

3 ��K 2 iki
z� exp�K�z 2 2a�� 1 �K 1 iki

z� exp�2K�z 1 2a 2 2d��� . (5)
Once again, the wave function given by Eq. (5) is not
square integrable in ky when d . a. In fact, when d �
2a the energy density inside the LHM slab diverges as
cosh�2K�z 2 2a�� for z . 2a when either z or K increase.
We see, therefore, that these divergencies prevent the LHM
slab from restoring the evanescent waves. Then, since
d must be d # a, according to Eq. (3), t fi 1. Hence,
the coupling of the evanescent waves with the propagating
waves at z . d 1 2a, which is necessarily involved in
the detection process, unavoidably leads to an amplitude
of the transmitted propagating wave different from that of
the corresponding component of the incident field. This
conveys an unavoidable aberration in the resultant angular
spectrum of the wave field transmitted into z $ 2a 1 d
and detected.

Similar results are obtained for p polarization, by ex-
changing m by e in the matching conditions.

So far, ideal lossless media have been addressed. How-
ever, the positivity of the electromagnetic energy imposes
that the LHM presents frequency dispersion [5]. This, in
turn, conveys that actual LH metamaterials be absorbing
[10,11]. We shall next see how the presence of absorption,
even if small, drastically changes the nature of the waves
in the LHM, as it produces an evanescent wave field, de-
caying as z increases, instead of an amplifying wave. We
207403-3
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once again consider a slab of LHM, surrounded by in vac-
uum, limited by the planes z � 0 and z � d. We ad-
dress an evanescent component of a wave-field incident
on the slab from z , 0. This evanescent wave decays
as z increases. Let the refractive index of the LHM at
some frequency v be n � 21 1 in2, with 0 , n2 ø 1.
Where we have made use of: n � 2

p
�2er 1 iei� �2m�

�e � er 1 iei�. When m � 1, and er � 1, one has: n �
2
p

1 2 iei � 2�1 2 iei�2�, so that n2 � ei�2. Then,

in the LHM: K �
q

k2
y 2 k2

0 becomes K�1 2 in2�.
Normalizing the incident evanescent wave to

exp�2Kiz0�, as before, one can make use of Eqs. (3)–(5)
by writing ki

z � iKi (incident evanescent wave on the
slab), substituting K by Ki�1 2 in2�, and making a � 0
(no air gaps). Then, providing that n2 exp�Kid� ¿ 2,
207403-4
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FIG. 1. Distribution jE�z�j2 exp�2Kiz0�, of an evanescent wave
intensity, both in vacuum �z , 0�, and inside a left-handed ma-
terial �z . 0� that presents absorption.

the second term in the denominator of Eqs. (3)–(5) can
be neglected. Thus, the fields read E�z0 # z # 0� �
���A�i� exp�2Kiz0�, 0, 0��� �exp�iki

yy 2 Kiz� 2
n212i

n2
3

exp�iki
yy 2 Kiz��,
E�0 # z # d� � ���A�i� exp�2Kiz0�, 0, 0���
Ω

2

n2
2

�2 2 in2� exp�iki
yy 1 Ki�z 2 2d� 1 iKin2�2d 2 z��

2 in2 exp�iki
yy 2 Kiz 1 iKin2z�

æ
, (6)
E�z $ d� � ���A�i� exp�2Kiz0�, 0, 0��� 4�12in2�
n2

2
exp�iki

yy 2

Kiz� exp�iKin2d�. Notice the remarkable fact that the ex-
istence of some absorption, which should be accounted
for when n2 exp�Kid� ¿ 2, gives rise in the LHM slab
to a decaying evanescent wave, stemming from the sec-
ond term of Eq. (6). This is in striking contrast with the
amplifying wave transmitted into the LHM in the absence
of such absorption. Also, there is now a wave reflected
at z � d, represented by the first term of Eq. (6). In fact,
when Kid ¿ 1, the second term of Eq. (6) dominates near
z � 0, whereas the first term contributes near z � d.

For example, for n2 � 0.1, Kid � 10, d � 2.8l, the
intensity at the exit of the slab is jE�z � d�j2 � 32 3
1025 exp�22Kiz0�, whereas if n2 � 0jE�z � d�j2 �
e20 exp�22Kiz0� � 5 3 108 exp�22Kiz0�. On the other
hand, the intensity at the entrance of the slab is jE�z �
0�j2 � j1 2 �n2 1 2i��n2j

2 � 4 3 102 exp�22Kiz0�. This
quantity is remarkably larger than the value exp�22Kiz0�
of the incident field intensity at z � 0 (which also
coincides with the total field at z � 0) when n2 � 0.
This increase is due to the contribution �n2 1 2i��n2
of the reflected wave at z � 0. Figure 1 shows
jE�z�j2 exp�2Kiz0�, both in vacuum �z , 0� and in-
side the LHM, �z . 0�. This plot, that has been limited to
the interval 21 , z�l , 1, illustrates the above remarks.

In conclusion, although evanescent waves in an ideal
lossless dispersiveless LHM slab become amplifying, the
width of this slab is limited, so that their restoration is
physically meaningless as it involves infinite energy. It
is neither true, as stated in [4], that multiple reflections
within the LHM slab are the cause of the amplifying wave,
simply because such multiple reflections do not exist since
the reflection coefficients at the slab interfaces are zero
for the constitutive parameters considered. In addition,
absorption, which linked to dispersion, is always present in
real LHM, transforms any amplified wave into a decaying
one inside this medium.
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