
VOLUME 88, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 2002

207208-1
Anomalous Hall Effect in Ferromagnetic Semiconductors
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We present a theory of the anomalous Hall effect in ferromagnetic (III, Mn)V semiconductors. Our
theory relates the anomalous Hall conductance of a homogeneous ferromagnet to the Berry phase ac-
quired by a quasiparticle wave function upon traversing closed paths on the spin-split Fermi surface. The
quantitative agreement between our theory and experimental data in both (In, Mn)As and (Ga, Mn)As sys-
tems suggests that this disorder independent contribution to the anomalous Hall conductivity dominates
in diluted magnetic semiconductors. The success of this model for (III, Mn)V materials is unprecedented
in the longstanding effort to understand origins of the anomalous Hall effect in itinerant ferromagnets.
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In recent years the semiconductor research community
has enjoyed a remarkable achievement, making III-V
compounds ferromagnetic by doping them with magnetic
elements. The 1992 discovery [1] of hole-mediated ferro-
magnetic order in (In, Mn)As has motivated research [2]
on GaAs and other III-V host materials. Ferromagnetic
transition temperatures in excess of 100 K [3,4] and long
spin-coherence times in GaAs [5,6] have fueled hopes
that a new magnetic medium is emerging that could open
radically new pathways for information processing and
storage technologies. Recent reports [7] of the room
temperature ferromagnetism predicted [8] for (Ga, Mn)N
have added to interest in this class of materials. In both
(In, Mn)As and (Ga, Mn)As systems, measurements of
the anomalous Hall effect have played a key role in
establishing ferromagnetism in the studied samples, and in
providing evidence for the essential role of hole-mediated
coupling between Mn local moments in establishing
long-range order [1,2,9]. Despite the importance of the
anomalous Hall effect (AHE) [10–15] for sample charac-
terization, a theory which allows these experiments to be
interpreted quantitatively has not been available. In this
article we present a theory of the AHE in ferromagnetic
III-V semiconductors that appears to account for existing
observations.

The Hall resistivity of ferromagnets has an ordinary
contribution, proportional to the external magnetic field
strength, and an anomalous contribution often assumed to
be proportional to the sample magnetization. Theories of
the anomalous Hall effect (AHE) in a metal [13] usually
start from a mean-field theory description of its ferromag-
netic state, in which current is carried by quasiparticles in
spontaneously spin-split bands. Recent theoretical stud-
ies of the AHE in colossal magnetoresistance manganites
[16], pyrochlore ferromagnets [17], or noncoplanar anti-
ferromagnets [18] relate the AHE to Berry phase effects
caused by carrier hopping in a noncollinear spin-splitting
effective field produced by a spin-lattice background. Non-
collinear magnetic order is, however, not required to pro-
duce an anomalous Hall effect and indeed it is not present
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in most materials in which the effect has been measured,
including those of interest to us here. In this paper we re-
late the AHE in collinear ferromagnets to a Berry phase
in momentum space, rather than real space. The AHE we
evaluate is a ground state property which depends on the
way in which spin-orbit coupled Bloch band wave func-
tions evolve with wave vector [19]. Our theory of the Hall
effect is not without precedent. It is related to the Kubo
formula for the Hall conductance derived by Thouless and
co-workers [20] in their analysis of the quantum Hall ef-
fect, and to the master-equation quantum-transport analy-
sis of Luttinger [11]. What is without precedent in this
work, is the demonstration that it quantitatively explains
the large anomalous Hall effect observed in this new class
of magnetic materials.

Our theory of the anomalous Hall effect in (III, Mn)V
ferromagnets is built on a mean-field description that has
recently been developed [21–25] and used successfully to
interpret many magnetic and transport properties. In this
mean-field theory the host semiconductor valence bands
are split by an effective field that results from exchange
interactions with polarized Mn moments. The field makes
a wave vector independent contribution,

Hsplit � hm̂ ? �s (1)

to the band Hamiltonian. Here m̂ is the polarization di-
rection of the local moments and �s is the electron spin
operator. The effective field h is proportional to the av-
erage local moment magnetization and is nonzero only
in the ferromagnetic state. The antiferromagnetic inter-
action [26,27] between localized and itinerant spins im-
plies that h . 0. When Mn spins are fully polarized, m̂ is
uniform and h � NMnSJpd, where NMn is the density of
Mn ions with spin S � 5�2, and Jpd � 50 6 5 meV nm3

is the strength of the exchange coupling between the lo-
cal moments and the valence band electrons [9]. In the
(In, Mn)As and (Ga, Mn)As AHE measurements, [1,2] m̂ is
in the �001̄� direction for positive external magnetic fields.
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From a symmetry point of view, the AHE is made possi-
ble by this effective magnetic field, and by the spin-orbit
coupling present in the host semiconductor valence band.

In the standard model of the AHE in metals, skew-
scattering [10] and side-jump [12] scattering give rise to
contributions to the Hall resistivity proportional to the di-
agonal resistivity r and r2, respectively, with the latter
process tending to dominate in alloys because r is larger.
We present our anomalous Hall effect theory using the lan-
guage of semiclassical transport theory, namely the expres-
sions for wave-packet dynamics developed previously by
one of us [28,29]. These imply a contribution to the Hall
conductivity independent of the kinetic equation scattering
term. Identical expressions can be derived using theoretical
approaches of Thouless and co-workers [20] or Luttinger
[11]. In the early stages of the development of AHE the-
ory disagreements arose between Smit [10] and Luttinger
[11], that do not appear to have ever been fully resolved,
on whether AHE can occur in a perfectly periodic lattice.
While Smit [10] argued that the explanation has to be based
on the anisotropic scattering we follow Luttinger [11] in
taking the view that there is a contribution to the AHE due
to the change in wave packet group velocity that occurs
when an electric field is applied to a ferromagnet.

Our focus on this anomalous wave-pocket velocity con-
tribution is motivated in part by practical considerations,
since our current understanding of (III, Mn)V ferromagnets
is not sufficient to permit confident modeling of quasipar-
ticle scattering, and in part by estimates [30] of a typi-
cal disorder spectral broadening which is smaller than the
spin-orbit coupling strength. Since the Hall resistivity
is invariably smaller than the diagonal resistivity, a tem-
perature independent value of the Hall conductivity cor-
responds to a Hall resistivity proportional to r2, usually
interpreted as evidence for dominant side-jump scattering.
As we explain below, we find quantitative agreement be-
tween our Hall conductance values and experiment.

The Bloch electron group velocity correction is conve-
niently evaluated using expressions derived by Sundaram
and Niu [28,29]:

�xc �
≠e

h̄≠�k
1 �e�h̄� �E 3 �V . (2)

The first term on the right-hand side of Eq. (2) is the stan-
dard Bloch band group velocity. Our anomalous Hall con-
ductivity is due to the second term, proportional to the
�k-space Berry curvature �V. It follows from symmetry con-
siderations that for a cubic semiconductor under lattice-
matching strains and with m̂ aligned by external fields
along the �001� growth direction, only Vz fi 0:

Vz�n, �k� � 2 Im

∑ø
≠un

≠ky

Ç
≠un

≠kx

¿∏
. (3)
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Here jun� is the periodic part of the nth Bloch band wave
function with the mean-field spin-splitting term included
in the Hamiltonian. The anomalous Hall conductivity that
results from this velocity correction is

sAH � 2
e2

h̄

X
n

Z d �k

�2p�3 fn,�kVz�n, �k� , (4)

where fn,�k is the equilibrium Fermi occupation factor for
the band quasiparticles. We have taken the convention that
a positive sAH means that the anomalous Hall current is
in the same direction as the normal Hall current.

This Berry phase contribution occurs for any itiner-
ant electron ferromagnet. To assess its importance for
(III, Mn)V compounds, we first explore a simplified model
that yields parabolic dispersion for both heavy-hole and
light-hole bands and a spin-orbit coupling [23,31] strength
that is much larger than the hole Fermi energy. De-
tailed numerical calculations that account for mixing of
the spin-orbit split-off bands, and warping of the occu-
pied heavy-hole and light-hole bands [23,31] in (In, Mn)As
and (Ga, Mn)As samples [1,3] will follow this general and
qualitative discussion. Within a 4-band model, the spin op-
erator �s � �j�3 in Eq. (1), and the spherical model Ham-
iltonian for holes in III-V host semiconductors can be
written as

H0 �
h̄2

2m

∑µ
g1 1

5
2

g2

∂
k2 2 2g2� �k ? �j�2

∏
, (5)

where �j is the total angular momentum operator, g1 and g2
are Luttinger parameters [31,32]. In the unpolarized case
�h � 0�, the total Hamiltonian, H � H0 1 Hsplit, is diag-
onalized by spinors j jk̂� where, e.g., jk̂ � �j ? k̂ � 63�2
for the two degenerate heavy-hole bands with effective
mass mhh � m��g1 2 2g2�. The Berry curvature (3),
which can be rewritten as �=�k ? �ẑ 3 �unj≠un�≠�k��, is fa-
miliar in this case since the Bloch eigenstates are j � 3�2
spin coherent states [33]. Integrating over planes of oc-
cupied states at fixed kz we find that

R
d2kfn,�kVz �n, �k� �

63�2�cosu�k 2 1� where cos�u�k� � kz�khh and khh is the
Fermi wave vector. The anomalous Hall conductivity
(4) vanishes in the h � 0 limit because the contributions
from the two heavy hole bands, and also from the two
light hole bands, cancel. In the ferromagnetic state, on
the other hand, majority and minority spin heavy and
light hole Fermi surfaces differ and also the Berry phases
are modified when h fi 0. Both effects contribute to
sAH . Up to linear order in h we obtain that k6

hh � khh 6

cosu�khmhh��2h̄2khh� and the Berry phase is altered by the
factor 1 7 2mh��9g2h̄2k2

hh�. A similar analysis for the
light-hole bands leads to a total net contribution to the AHE
from the four bands whose lower and upper bounds are the
following:
e2

2p h̄
h

2p h̄2 �3p2p�21�3mhh , sAH ,
e2

2p h̄
h

2p h̄2 �3p2p�21�322�3mhh . (6)
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Here p � k3
hh�3p2�1 1 �mlh�mhh�3�2� is the total hole

density and mlh � m��g1 1 2g2� is the light-hole effec-
tive mass. The lower bound in Eq. (6) is obtained assum-
ing mlh ø mhh while the upper bound is reached when
mlh 	 mhh.

Based on the above analysis we conclude that the
Berry phase anomalous velocity can yield a sizable
AHE in (III, Mn)V ferromagnets. The dot-dashed line
in Fig. 1 shows our analytic results for GaAs effective
masses mhh � 0.5m and mlh � 0.08m. Note that in
experiment, anomalous Hall conductances are of order
1 10 V21 cm21 and the effective exchange field
h 
 10 2 100 meV. According to Eq. (6) larger
sAH values should be expected in systems with larger
heavy-hole effective masses and in systems with the ratio
mlh�mhh close to unity.

So far we have discussed the limit of infinitely strong
spin-orbit coupling with an exchange field that is small
relative to the hole Fermi energy. In the opposite lim-
its of zero spin-orbit coupling or large h, sAH vanishes.
This implies that the anomalous Hall conductivity is gener-
ally nonlinear in the exchange field and the magnetization.
To explore the intermediate regime we numerically diag-
onalized the 6-band Luttinger Hamiltonian [23,31] with
the spin-orbit gap Dso � 1 eV, and for the GaAs value
Dso � 341 meV. The results shown in Fig. 1 confirm that
a smaller sAH is expected in systems with smaller Dso and
suggest that both positive and negative signs of sAH can
occur in general.

The curves in Fig. 1 are obtained by neglecting band
warping in III-V semiconductor compounds. The property
that the valence bands in these materials are strongly
nonparabolic, even in the absence of the field h and even
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FIG. 1. Illustrative calculations of the anomalous Hall conduc-
tance as a function of polarized Mn ions field for hole den-
sity p � 0.35 nm21. The dot-dashed curve was obtained as-
suming infinitely large spin-orbit coupling. The decrease of
theoretical sAH with decreasing spin-orbit coupling strength is
demonstrated for Dso � 1 eV (dashed line) and Dso � 341 meV
(solid line).
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in the large Dso limit, is accurately captured by intro-
ducing the third phenomenological Luttinger parameter
g3 [23,31]. Our numerical results indicate that warping
(g2 fi g3) leads to an increase of sAH , as seen when
comparing the solid curves in Fig. 1 and in the top panel
of Fig. 2. The hole-density dependence of sAH , illustrated
in Fig. 2, is qualitatively consistent with the spherical
model prediction (6). The numerical data in Fig. 2 are
also consistent with the trends for dependence on host
parameters, highlighted in italics in the preceeding para-
graphs, suggesting a large positive AHE coefficient for
(Al, Mn)As �mhh � 0.66m, mhh�mlh � 3.96, g2�g3 �
1.73�, an intermediate positive sAH in (Ga, Mn)As
�mhh � 0.5m, mhh�mlh � 6.05, g2�g3 � 1.42�, and
a relatively weak AHE in (In, Mn)As �mhh �
0.43m, mhh�mlh � 21.5, g2�g3 � 1.08� with a sign
that may be sensitive to strain and other details of a
particular sample.

We now compare our sAH theory with the experi-
mental data available in (In, Mn)As and (Ga, Mn)As
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FIG. 2. Full numerical simulations of sAH for GaAs host (top
panel), InAs host (bottom panel), and AlAs host (inset) with hole
densities p � 0.1 nm21 (dotted lines), p � 0.2 nm21 (dashed
lines), and p � 0.35 nm21 (solid lines). Luttinger parameters of
the valence bands were obtained from Ref. [32]. Filled circles in
the top and bottom panels represent measured AHE [1,3,9]. The
saturation mean-field h values for the two points were estimated
from nominal sample parameters [1,3,9]. Horizontal error bars
correspond to the experimental uncertainty of the Jpd coupling
constant. Experimental hole density in the (Ga, Mn)As sample is
p � 0.35 nm21; for (In, Mn)As, p � 0.1 nm21 was determined
indirectly from sample’s transition temperature.
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samples, studied extensively by Ohno and co-workers
[1,3,4,9]. The nominal Mn densities in these two systems
are NMn � 0.23 nm23 for the InAs host and NMn �
1.1 nm23 for the GaAs host, yielding saturation
values of the effective field h � 25 6 3 meV and
h � 122 6 14 meV, respectively. The low-temperature
hole density of the (Ga, Mn)As sample, p � 0.35 nm23,
was unambiguously determined [9] from the ordinary Hall
coefficient measured at high magnetic fields. Since similar
experiments have not been reported for the (In, Mn)As
sample, we estimated the hole density, p � 0.1 nm23,
by fitting the density-dependent mean-field theory Tc to
the measured value Tc � 7.5 K. The use of a mean-field
theory description of the ferromagnetic state in both
samples is justified [34,35] by the homogeneity of the
samples and by the relatively small Fermi energy density
of states. Indeed, the measured ferromagnetic transition
temperature for the (Ga, Mn)As sample, Tc � 110 K, is
in an excellent agreement with the calculated transition
temperature [22,25,36], and mean-field theory also suc-
cessfully explains the magnetic anisotropy of both systems
[22,23]. Luttinger parameters for the two host semicon-
ductors are well known [32] and are listed in the caption
of Fig. 2. As demonstrated in Fig. 2, our theory explains
the order of magnitude difference between AHE’s in the
two materials [sAH 	 1 V21 cm21 in (In, Mn)As and
sAH 	 14 V21 cm21 in (Ga, Mn)As]. The calculations
are also consistent with the positive sign and monotonic
dependences of sAH on sample magnetizations [9].

We take the agreement in both magnitude and sign of the
AHE as a strong indication that the anomalous velocity
contribution dominates AHE in homogeneous (III, Mn)V
ferromagnets. This Berry phase conductivity, which is in-
dependent of quasiparticle scatterers, is relatively easily
evaluated with high accuracy. According to our theory,
comparison of theoretical and experimental Hall conduc-
tivity values provides information not only on the magne-
tization but also on the character of the itinerant electron
wave functions that participate in the magnetism. For ex-
ample, we predict that size quantization effects in quantum
wells that inhibit heavy-light hole mixing will reduce the
�k-space Berry curvatures and hence anomalous Hall con-
ductivities. The extreme strength of the spin-orbit interac-
tion compared to other characteristic energy scales in DMS
ferromagnets, may be responsible for the relatively simple
physics that evidently determines their AHE. Neverthe-
less, the success reported here motivates a reexamination
of this effect in all itinerant electron ferromagnets.
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