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Model for Superconductivity in Ferromagnetic ZrZn2
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We propose that superconductivity in the ferromagnetic state of ZrZn2 is stabilized by an exchange-type
interaction between the magnetic moments of triplet-state Cooper pairs and the ferromagnetic magne-
tization density. This explains why superconductivity occurs in the ferromagnetic state only, and why
it persists deep into the ferromagnetic state. The model of this article also yields a particular order
parameter symmetry, which is a prediction that can be checked experimentally.
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Recently, superconducting states have been found to
coexist with ferromagnetism in the materials UGe2 [1–3],
ZrZn2 [4], and URhGe [5]. The initial discovery in UGe2

was motivated by the idea that parallel-spin (and hence
spin-triplet-state) Cooper pairs would be favored in a
metallic state close to the border of ferromagnetism. The
proximity of a ferromagnetic state would give rise to
relatively strong ferromagnetic fluctuations which would
promote spin-triplet pairing.

A sketch of the phase diagram as measured in Ref. [4]
for ZrZn2 is shown in Fig. 1. As noted by the authors of
Ref. [4], one of the most intriguing and perhaps surpris-
ing features of superconductivity in ZrZn2 (as well as that
occurring in UGe2) is that it occurs only in the ferromag-
netic state. The reason for the surprise is that previous
theoretical work had not anticipated that superconductiv-
ity could occur in the ferromagnetic phase, unless at the
very least it was also stable in the paramagnetic phase.
The possibility that superconductivity might appear only
in the ferromagnetic phase does not seem to have been
considered before the recent experimental discoveries. For
example, a very early article [6] had noted that the pres-
ence of the large internal magnetic induction in a ferromag-
net would suppress superconductivity. Also, another early
theoretical article [7], which demonstrated how spin fluc-
tuations can give rise to p-wave superconductivity, found
that the superconductivity occurs in both the ferromagnetic
and paramagnetic phases close to the ferromagnetic quan-
tum critical point (see Fig. 2). Other examples which find
superconductivity on the paramagnetic side of a ferromag-
netic quantum critical point include Refs. [8–11]. Very re-
cently it has been argued [12] that the critical temperature
for spin-triplet p-wave superconductivity mediated by spin
fluctuations is generically much higher in the Heisenberg
ferromagnetic phase than in the paramagnetic phase, due
to the coupling of the magnons to the longitudinal spin sus-
ceptibility, and this result is qualitatively in agreement with
the superconducting phase diagram for UGe2 (see Fig. 2).
Another line of argument [13] is that the pairing symmetry
realized in UGe2 must be a nonunitary spin-triplet pairing
similar to that realized [14] in the A1 phase of superfluid
3He because such states are free from the Pauli limit and
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can survive in a huge internal magnetic field. In addition,
the superconducting order-parameter symmetry in the fer-
romagnetic phase of UGe2 has been studied [15] in terms
of the magnetic point group symmetry of the ferromagnetic
phase. The ideas introduced below have some overlap with
these latter [13–15] ideas. Finally, we note an article that
has shown theoretically that coexisting superconductivity
and ferromagnetism can occur for the case where the same
band electrons produce both phenomena [16].

This article describes a phenomenological model that
gives a good description of superconductivity in ferromag-
netic ZrZn2 (although not in ferromagnetic UGe2). In par-
ticular, the model gives a natural explanation of the fact
that superconductivity occurs in the ferromagnetic but not
in the paramagnetic phase. The basic idea is that in the
superconducting state the Cooper pairs can have magnetic
moments —see Ref. [17]. In the presence of a ferromag-
netic magnetization density in the sample the magnetic
moments of the Cooper pairs can interact with this ferro-
magnetic magnetization density via an interaction having
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FIG. 1. Phase diagram showing the ferromagnetic (Tf) and su-
perconducting (Ts) transition temperatures in ZrZn2 as functions
of pressure, as derived from the model of this article and as de-
termined by experiment [4]. For clarity, the temperature scale
for the superconducting phase transition has been multiplied by a
factor of approximately 10 relative to that for the ferromagnetic
phase transition as in Ref. [4]. Note that the qualitative behav-
iors of both Tf and Ts for UGe2 (sketch of data from Ref. [1])
are quite different from those for ZrZn2.
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FIG. 2. Schematic reproduction of the results of Ref. [7] (solid
line) and Ref. [12] (dashed line) showing theoretical calculations
of the p-wave superconducting transition temperature versus
pressure P. (Here P represents any parameter characterizing the
distance from the quantum critical point.) The results of Ref. [7]
and others (see text) were responsible for the idea that super-
conductivity in a ferromagnetic state would also be accompanied
by superconductivity in the neighboring paramagnetic state. The
very recent result of Ref. [12] is qualitatively similar to the phase
diagram determined for UGe2 (which has a small pocket of su-
perconductivity close to Pc) but not to that for ZrZn2 (where
superconductivity occurs at all P between P � 0 and P � Pc).

the form of an exchange interaction. The Cooper pair mag-
netization density chooses a direction that makes this “ex-
change” energy negative, and this is the mechanism that
makes the superconducting state more stable in the ferro-
magnetic state than in the paramagnetic state. As will be
shown below, in order to give rise to superconductivity in
the ferromagnetic state but not in the paramagnetic state,
the exchange coupling just described must be greater than
a certain critical value.

The ferromagnetic state will be modeled using the
Landau free energy [18]

Ff � a0
f �T 2 Tf�P��M2 1

1
2

bfM4. (1)

Here the ferromagnetic transition temperature Tf is as-
sumed to depend on the pressure P. Expanding Tf�P�
in a Taylor series about the point Pc at which it goes to
zero, and keeping only the first nonvanishing term, yields
Tf �P� � T 0

f �Pc 2 P�. This linear dependence of Tf on
P agrees well with the experimentally measured pressure
dependence for ZrZn2 [4], shown in Fig. 1. From Eq. (1)
one finds M � �a0

f�bf�1�2�Tf�P� 2 T�1�2.
For cubic ferromagnets (such as ZrZn2) the only two

possibilities for the easy direction of the ferromagnetic
magnetization density are the [100] or [111] direction
[18]. Although in the absence of ferromagnetism, the C15
Laves phase structure of ZrZn2 has cubic Oh (m3m) point
group symmetry, the point group symmetry in the presence
of ferromagnetism is reduced to the magnetic point group
D4h�C4h� (4�mm0m0) symmetry for the ferromagnetic
magnetization density in the [100] direction, or D3d�C3i�
(3m0) for the ferromagnetic magnetization density in the
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[111] direction. Since all of the irreducible representations
of C4h and C3i are one dimensional, it is expected that
the transition to superconductivity in the presence of
ferromagnetism can be described by a one-component
order parameter.

It is of interest to investigate how this one-component
order parameter describing superconductivity in the pres-
ence of ferromagnetism might be related to order parame-
ters appropriate to the description of superconductivity in
cubic ZrZn2 in the absence of ferromagnetism. An ad-
vantage of treating the paramagnetic, nonsuperconducting
state as the reference state is that an explicit dependence
of the parameters describing the superconductivity on M
is obtained (see below). Because of the large value of the
exchange field compared to the superconducting critical
temperature, all spin-singlet states of Cooper pairs are ex-
cluded. Thus, assuming spin-triplet pairing, consider the
representation F1u of the group Oh for which the order pa-
rameter is the three-component quantity c � �cx , cy , cz�
whose components transform under rotations like those of
a three-dimensional polar vector [19] (the F2u represen-
tation gives the same model). We use a strong spin-orbit
coupling scheme, in which rotations transform both spin
and orbital degrees of freedom. Also, the time-reversed
state corresponding to c is cR � �c�

x , c�
y , c�

z �. Now de-
fine the vector product

S � ic� 3 c . (2)

Because this quantity transforms like a magnetization den-
sity under the operations of Oh and time reversal, it will
be interpreted (to within a constant factor) as a magnetiza-
tion density associated with the Cooper pairs. It should be
noted that, at the phenomenological level of this article,
in the strong spin-orbit coupling scheme, the spin and
orbital magnetization density of Cooper pairs cannot be
distinguished.

Now consider the following terms of an expansion of
the Ginzburg-Landau (GL) free energy in powers of the
components of the order parameters M and c

FS,0 � ac� ? c 2 4pJM ? S . (3)

Only the terms quadratic in the superconducting order
parameter and consistent with the cubic symmetry and
time-reversal invariance have been included here, since
these are all that are necessary (together with the gradient
terms) to find the upper critical field for superconductiv-
ity. Furthermore, terms up to linear order in M have been
included. Note that the last term in this equation has the
form of an exchange interaction between the ferromagnetic
magnetization density and the Cooper-pair magnetization
density. If the exchange parameter J is positive, the forma-
tion of a superconducting state in which the Cooper-pair
magnetization density is parallel to the ferromagnetic mag-
netization density is favored. Also, if the ferromagnetic
magnetization density M is rotated (by an applied mag-
netic field) this exchange mechanism for stabilizing the
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superconductivity is still applicable, and the orientation of
the Cooper-pair magnetization density S will follow that
of the ferromagnetism. (If J , 0, an equivalent model
is obtained in which a Cooper-pair magnetization density
antiparallel to the ferromagnetic magnetization density is
favored.) The free energy of Eq. (3) is reminiscent of that
employed in the description of the A1 phase of 3He [14].

Now call the direction of the nonzero ferromagnetic
magnetization density the z direction (which, as noted
above, can be either a [100] or a [111] direction for a cubic
ferromagnetic). In addition to the exchange field coupled
with the spin of electrons, the magnetization creates an in-
ternal magnetic induction which interacts with the electron
charge. Thus, the superconductor should be in the mixed
state even in the absence of an external magnetic field, and,
in order to calculate the transition temperature, one has to
take into account the gradient terms in the GL free energy,
in addition to the uniform terms given by Eq. (3):

FS � FS,0 1 K1�Dicj���Dicj�
1 K2��Dici���Djcj� 1 �Dicj���Djci��
1 K3�Dici���Dici � . (4)

Here a � a0�T 2 T0�, and T0 is the superconducting
transition temperature in the absence of the exchange
interaction of Cooper pairs with the ferromagnetic magne-
tization (i.e., at J � 0), which is assumed to be positive.
The gradient part contains terms which are invariant
under rotations from the cubic group [20], with Di �
2ih̄�≠�≠xi� 1 �2jej�c�Ai, and curlA � B. The magnetic
induction is given by B � Hext 1 4pM, where Hext

is the external magnetic field directed along z, and the
magnetization density is M � M0 1 �m 2 1�Hext�4p.
The long cylinder geometry, with the z axis along the axis
of the cylinder, has been assumed.

Using a variational approach [21] to minimize the free
energy (4), we calculate the superconducting critical tem-
perature as a function of the magnetization density and
external field, which takes the simple form

Tc�M� � T0 1
4p�J 2 Jc�

a0
M (5)

at Hext � 0. The quantity Jc describes the suppression
of the critical temperature due to orbital effects. It takes
different values for M k �100�: Jc � �jej�h̄c� �2K1 1
2K2 1 K3�, and for M k �111�: Jc � �jej�h̄c� �2K1 1

2K2 1 2K3�3�. Another result of our calculation is that
the only component of the order parameter which is
nonzero at T � Tc�M� 2 0 is c2 � �cx 2 icy ��

p
2

[or c1 � �cx 1 icy ��
p

2 for J , 0]. It is this quantity
that describes the formation of a superconducting state
with its Cooper-pair magnetization density parallel to
the ferromagnetic magnetization density. Finally, note
from Eq. (5) that, in order for Tc to be enhanced in the
ferromagnetic phase relative to its value T0 in the para-
magnetic phase, the exchange parameter J must be greater
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than Jc. In the weak-coupling theory, J is proportional
to N 0�eF�, the derivative of the single-particle density of
states (DOS) at the Fermi level [17]. The smallness of this
quantity in 3He explains the narrow region of existence of
the A1 phase. In the case of ZrZn2, however, where the
DOS is extremely sharply peaked near the Fermi energy
[22], N 0�eF� could be very large, but estimating J in terms
of N 0�eF� is probably too simplistic.

In order to confirm c2 as a possible order parameter
describing the formation of superconductivity in the fer-
romagnetic state, it should be checked that it transforms
as a basis vector of some irreducible representation of the
magnetic symmetry group of the ferromagnet [15]. Sup-
pose that the ferromagnetic magnetization density is along
the [100] direction. Then the magnetic symmetry group
is D4h�C4h� � C4h 1 �RC2x �C4h. (Here R is the time-
reversal transformation.) In this case, c2 transforms like
one of the complex irreducible representations (1E or 2E)
of C4h. Furthermore, although there is no time reversal op-
eration in this magnetic group, the operator RC2x has the
effect of replacing c2 by its complex conjugate. Hence
c2 is a possible order parameter. A similar analysis can
be performed if the ferromagnetic magnetization density is
along the [111] direction, when the magnetic point group
is D3d�C3i� � C3i 1 �RC2x�C3i. Here too the order pa-
rameter transforms like one of the complex representations
(1E or 2E) of the relevant point group �C3i�. It should be
noted that this predicted symmetry of the superconducting
state can be verified by experimental measurement (e.g.,
see [23]).

The pressure dependence of the critical temperature Ts

of the transition to the superconducting state can be found
from Eq. (5) to be given by the solution of

Ts � T0 1 T�1�2�Tf�P� 2 Ts�1�2, (6)

where

T � �

µ
a

0
f

bf

∂ µ
4p

a0

∂2

�J 2 Jc�2. (7)

By assumption, the exchange enhancement results in
a superconducting transition temperature Ts much greater
than the superconducting transition temperature T0 in the
paramagnetic state. Furthermore, except for P very close
to Pc, Ts ø Tf�P�. Under these conditions the pressure
dependence of Ts is given by the formula

Ts�P� � Ts�0� �1 2 P�Pc�1�2. (8)

When P gets very close to Pc and Tf�P� becomes very
small this equation is no longer valid. In this extreme
circumstance, if one takes T0 � 0 and Tf�P� ø T �,
one finds

Ts�P� � Tf�P� �1 2 Tf�P��T� 1 . . .� , (9)

which shows that, for P very close to Pc and T0 � 0,
Ts�P� approaches Tf�P�, and is never greater than Tf�P�.
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Equation (8), together with the equation for the ferromag-
netic transition temperature

Tf�P� � Tf�0� �1 2 P�Pc� (10)

arrived at above, have been used to plot the phase diagram
of Fig. 1, which shows a remarkable similarity to the ex-
perimentally determined [4] phase diagram for ZrZn2.

Finally, at a given pressure, we find a temperature de-
pendence of the upper critical field of

Hc2�T , P� � Hc2�0, P� �1 2 T�Ts�P�� . (11)

This is in reasonable agreement with the experimental re-
sult (see Fig. 3 of Ref. [4]), which, however, has somewhat
more curvature than the linear temperature dependence
shown here. The lack of curvature in the result of Eq. (11)
results from the linear dependence of Mz on Hext in our
relation Mz � Mz0 1 �m 2 1�Hext��4p�.

We conclude that the proposed mechanism of stabiliz-
ing superconductivity in a ferromagnet (by an exchange
type of interaction between the magnetization density of
the Cooper pairs and the ferromagnetic magnetization den-
sity) gives an excellent qualitative description of the phase
diagram determined experimentally for ZrZn2. In particu-
lar, it explains in a natural way the fact that the supercon-
ductivity occurs in the ferromagnetic phase, but not in the
paramagnetic phase. For this mechanism to work, the ex-
change interaction parameter must have a magnitude larger
than a certain critical value. A further experimental test of
our model would be the determination of the order parame-
ter symmetry. (A prediction of our model is that the order
parameter transforms like one of the complex representa-
tions of the relevant point group.)

It should be mentioned that the spin-fluctuation mecha-
nism studied in Ref. [12] can provide an alternative expla-
nation of growing Ts in the ferromagnetic state, given that
the magnetization in ZrZn2 does not reach saturation. To
what extent the fluctuation effects discussed in Ref. [12]
are essential compared to the mean field interactions stud-
ied in this article, is in our view still an open question,
and their relative contributions can be different in differ-
ent materials. For example, it seems that the phase diagram
of UGe2 (see Fig. 1) can be satisfactorily explained by the
spin-fluctuation theory, and the apparent absence of con-
tributions from the exchange interaction of our work could
be explained by the magnitude of the exchange parameter
being less than its critical value.
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