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A theoretical description of electron spin resonance (ESR) in 1D interacting metals is given, with pri-
mary emphasis on carbon nanotubes. The spin-orbit coupling is derived, and the resulting ESR spectrum
is analyzed using a low-energy field theory. Drastic differences in the ESR spectra of single-wall and
multiwall nanotubes are found. For single-wall tubes, the predicted double peak spectrum is linked to
spin-charge separation. For multiwall tubes, a single narrow asymmetric peak is expected.
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Electron spin resonance (ESR) serves as a valuable tool
to experimentally probe the intrinsic spin dynamics of
many systems. In ESR experiments, one applies a static
magnetic field and measures the absorption of radiation
polarized perpendicular to the field direction. In the ab-
sence of SU(2) spin symmetry breaking terms in the sys-
tem Hamiltonian, the absorption intensity is then simply a
d peak at the Zeeman energy [1]. Since spin-orbit (SO)
interactions are generally the leading terms breaking the
SU(2) invariance, deviations in the ESR intensity from
the d peak, e.g., shifts or broadenings, are directly con-
nected to these couplings. In this Letter we theoretically
address the spin-orbit interaction and the resulting ESR
spectrum for interacting 1D metallic conductors, in par-
ticular for carbon nanotubes. Nanotubes constitute a new
class of mesoscopic quantum wires characterized by the
interplay of strong electron-electron interactions, reduced
dimensionality, disorder, and unconventional spin dynam-
ics [2–6]. ESR is an important technique to elucidate as-
pects of this interplay inaccessible to (charge) transport
experiments. For interacting many-body systems, surpris-
ingly little is known about ESR although it represents an
interesting theoretical problem.

Two main classes of nanotubes may be distinguished,
namely, single-wall nanotubes (SWNTs) which consist
of just one wrapped-up graphite sheet, and multiwall
nanotubes (MWNTs). MWNTs contain additional inner
shells, but transport is generally limited to the outermost
shell [4]. Evidence for the Luttinger liquid (LL) behavior
of interacting 1D electrons has been reported for charge
transport in SWNTs [3], where one also expects to find
spin-charge separation [5,6]. Conventional wisdom holds
that the SO coupling in 1D conductors destroys spin-charge
separation [7]. Below we show that this statement is
incorrect. The SO interaction considered in Ref. [7] was
intended for the limited class of semiconductor quantum
wires in strong Rashba and confinement electric fields, but
in fact does not represent the generic SO Hamiltonian for
1D conductors. The latter is derived below and determines
the ESR intensity in SWNTs and MWNTs. A totally
different ESR spectrum compared to expectations based
on Ref. [7] emerges. In particular, the single d peak is
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split into two narrow peaks in SWNTs, while for the SO
coupling of Ref. [7], the spectrum forms a broad band
with thresholds at the lower and upper edges [8]. This
qualitative difference can be traced back to the fact that
the SO interaction in SWNTs [see Eq. (5) below] does
not spoil spin-charge separation. Experimental observa-
tion of the peak splitting could therefore provide strong
evidence for the elusive phenomenon of spin-charge
separation. In MWNTs, inner shells cause a rather strong
Rashba-type SO coupling, leading instead to a single
narrow asymmetric ESR peak. To experimentally observe
our predictions, it will be crucial to work with samples
free of magnetic impurities whose presence has drastically
affected previous ESR measurements for nanotubes [4].

In the standard Faraday configuration, the ESR intensity
at frequency v is proportional to the Fourier transform of
the transverse spin-spin correlation function [1],

I�v� �
Z
dt eivt�S1�t�S2�0�� , (1)

where the static magnetic field points along the z axis and
�S �

P
i

�Si is the total spin operator. Equation (1) is con-
nected to the dynamical susceptibility via I�v� � vx 00�v�.
The Hamiltonian is H � H0 1 HZ 1 H0, where H0 rep-
resents the SU(2) invariant nanotube Hamiltonian including
electron-electron interactions, HZ � 2BSz is the Zeeman
term [9], and H 0 represents SU(2) breaking terms, in par-
ticular the SO coupling. Inserting a complete set of eigen-
states ja� of H in Eq. (1), the ESR intensity follows as

I�v� �
1
Z

X
a,b
e2Eb�Td�v 2 �Ea 2 Eb�� j�ajS2jb�j2.

If H is SU(2) invariant (apart from HZ), I�v� receives
contributions only from matrix elements between eigen-
states with equal total spin Sa � Sb. Then all states with
Sza � Szb 2 1 will contribute to form a d peak at frequency
v � B. At zero temperature, the application of a magnetic
field B, taken as large enough to overcome a spin gap pos-
sibly present at B � 0, leads to a ground state with finite
magnetization, S0 fi 0, and the states with Sza � Sz0 2 1
yield the d peak. Any perturbation preserving SU(2)
invariance will neither shift nor broaden this peak, even
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at finite temperature, and it is therefore crucial to identify
H 0. For quantum spin chains, staggered magnetic fields
and Dzyaloshinskii-Moriya interactions have been empha-
sized [1].

Let us start with the derivation of the SO interaction in
nanotubes. In this derivation we neglect electron-electron
interactions which only weakly renormalize the SO
strength [10]. In a single-particle picture, the SO inter-
action then appears because an electron moving in the
electrostatic potential F��r�, e.g., due to the ions, sees an
effective magnetic field �y 3 =F. With �p � m �y and the
standard Pauli matrices �s, the SO interaction reads in
second-quantized form,

H 0 � 2
gemB

4m

Z
d �rCy�� �p 3 =F� ? �s�C . (2)

The electron spinor field Cs��r�, defined on the wrapped
graphite sheet, can be expressed in terms of the electron
operators ci for honeycomb lattice site i at �ri, Cs� �r� �P
i x��r 2 �ri�cis, where x��r � is the 2pz orbital wave func-

tion. The localized orbitals can be chosen as real-valued
functions even when hybridization with 2s orbitals is taken
into account, but their specific form is of no immediate in-
terest here. We then obtain the SO interaction, see also
Refs. [11,12],

H 0 �
X
� jk�

ic
y
j � �ujk ? �s�ck 1 H.c. , (3)

which indeed breaks SU(2) symmetry. With obvious modi-
fications, Eq. (3) applies to other 1D conductors and thus
represents a generic SO Hamiltonian. The SO vector
�ujk � 2 �ukj has real-valued entries,

�ujk �
gemB

4m

Z
d �r F��r� �=x��r 2 �rj� 3 =x��r 2 �rk�� .

(4)

The on-site term ( j � k) is identically zero, and since the
overlap decreases exponentially with j�rj 2 �rk j, we keep
only nearest-neighbor terms in Eq. (3). We mention in
passing that Eq. (3) has previously been found from the
�k ? �p theory by Ando [12]. However, his approach makes
rather special model assumptions and is technically de-
manding, yet it does not allow us to reliably compute the
SO vector �ujk to better accuracy than specified in Eq. (4).
In addition, the effect of SO interactions within the low-
energy theory of nanotubes [5] has not been analyzed. We
therefore take Eq. (3) as the SO Hamiltonian for SWNTs
and MWNTs, with the SO vector (4). This formulation
also allows us to incorporate electric fields due to impuri-
ties or close-by electrodes in a simple and elegant manner.

Let us first turn to SWNTs, where SO couplings are
expected to be small. This can be rationalized from our
approach since the SO vector (4) vanishes by symmetry for
an ideal 2D honeycomb lattice. A finite (nearest-neighbor)
SO coupling can only arise due to the curvature of the
wrapped sheet, stray fields from nearby gates, or due to
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defects, all of which break the high symmetry and, in
principle, allow for significant SO couplings [6]. Focus-
ing on the curvature-induced SO coupling for nonchiral
SWNTs, the SO vector depends only on bond direction,
�u�ri ,�ri1 �da � �ua, for the nearest-neighbor bonds �da (a �
1, 2, 3) of the graphite sheet [2].

To make progress, we employ the effective field theory
approach [5]. Neglecting the (here inessential) “flavor”
index due to the presence of two Fermi (K) points [2], H0
then corresponds to a spin-1�2 LL described by charge/
spin interaction parameters Kc , 1,Ks and velocities
yc�s � yF�Kc�s with the Fermi velocity yF � 8 3

105 m�sec; SU(2) invariance ofH0 fixes Ks � 1 [13]. The
LL Hamiltonian completely decouples when expressed in
terms of spin and charge boson fields [13], and the Zee-
man term HZ affects only the spin sector. Written in terms
of right- and left-moving fermions cR�L, the continuum
version of Eq. (3) is (up to irrelevant terms) H 0 �
H1 1 H2 with

H1 �
Z
dx �l ? � �JL 2 �JR� , (5)

H2 �
Z
dx

X
r�R�L

cy
r

�l0 ? �si≠xcr 1 H.c. (6)

With the unit vector êt along the tube axis, we use

�l � 2 Im
X
a
ei

�K? �da �ua, �l0 �
X
a
ei

�K? �da�êt ? �da��ua ,

and neglect oscillatory terms which average out on large
length scales. These oscillations are governed by the wave
vector 2kF corresponding to the doping level m, kF �
jmj�yF , with typical values jmj 	 0.3 to 0.5 eV [14]. Fi-
nally, �JR,L � c

y
R�L� �s�2�cR�L are the standard SU(2) spin

currents. The perturbation (5) has scaling dimension 1
(relevant), whereas Eq. (6) has dimension 2 (marginal).
Therefore the leading SO contribution retained in what fol-
lows is Eq. (5).

Remarkably, the SO interaction (5) acts exclusively in the
spin sector and hence does not spoil spin-charge separa-
tion. As a consequence, since electron-electron interactions
affect only the charge sector, the ESR intensity can be
computed using the equivalent fermionic spin Hamiltonian

Hf �
X

r�R�L�6

Z
dx �2iryscy

r ≠xcr 1 �lr ? �Jr � , (7)

where �l6 � �B 6 �l. Since Hf is bilinear in the fermions,
after some straightforward algebra, the exact ESR spec-
trum follows for arbitrary temperature

I�v� �
X
r�6

µ
1 1

lzr
lr

∂2 lr

4ys�1 2 e2lr�T �
d�v 2 lr � ,

(8)

with l6 � j �l6j. As a consequence of SO coupling, the
single d peak splits into two peaks but there is no broad-
ening. The peak separation is jl1 2 l2j, and the peak
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heights are generally different. To lowest order in l�B, the
two peaks are located symmetrically around v � B. No-
tice that, for �B perpendicular to the effective SO vector �l,
the splitting is zero. It should be stressed that these results
hold both for the noninteracting and the interacting case.
The double peak is therefore not directly related to the dou-
bling of singularities in the single-electron Greens function
commonly associated with spin-charge separation. How-
ever, for the interacting case realized in SWNTs [3], the
double peak structure is only possible if spin-charge sepa-
ration is present. Otherwise the charge sector will mix
in, leading to broad bands with threshold behaviors [8].
Closer inspection shows that inclusion of the subleading
term (6) preserves the splitting into two peaks, but the
peaks now acquire a finite width �j �l0j.

Experimental observation of the predicted double peak
spectrum could then provide strong evidence for spin-
charge separation. In practice, to get measurable inten-
sities, one will have to work with an ensemble of SWNTs.
The proposed experiment may be possible using electric-
field-aligned SWNTs, or by employing arrays of identical
SWNTS [15]. In more conventional samples containing
many SWNTs, however, the SO vector �l can take any di-
rection. Assuming a uniform probability distribution for
the orientation of �l, the average can easily be done. For
T � 0 and �l0 � 0, we find

I�v� �
��v 1 B�2 2 l2�2

16ysB3l
u�B 1 l 2 v�

3 u�v 2 jB 2 lj� , (9)

with the Heaviside function u�z�. For B . l, this asym-
metric spectrum has the width Dv � 2l, which in turn
allows us to extract the SO coupling strength l from ESR
measurements.

For the remainder, we then focus on MWNTs where
we first contemplate a simple two-shell model. Experi-
mental evidence [4] is consistent with the assumption that
intershell tunneling is strongly suppressed. Therefore dop-
ing due to charge transfer from the substrate, the attached
leads, or due to oxygen absorption, should affect only the
outermost shell, while m 	 0 for inner shells. Under this
assumption, basically all conduction electrons contributing
to the ESR signal reside in the outermost shell. Moreover,
the electrostatic potential Fo of the outer shell differs from
the inner-shell potential Fi. In effect, we can then restrict
attention to the outermost shell (of radius R) alone, but in
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a radial electric field of size E 	 2c12DF�R, where c12 is
the intershell capacitance per length and DF � Fi 2 Fo .
The general expression (4) for the SO vector then yields
after some algebra for a given bond �da,

�ua � �u�yF�Ê 3 �da , (10)

where Ê is a unit vector perpendicular to the tube sur-
face, and u 	 c12eDF��m2dR� with the C-C distance
d � 1.42 Å.

To proceed, we turn to the low-energy theory, again
for only one K point. The influence of interactions is
expected to be less dramatic in MWNTs compared to
SWNTs, and here we focus on the noninteracting case.
In real space, we then have a Dirac Hamiltonian, H0 �
2iyF

R
d �rCy� �t ? �=�C, where the integral extends over

the tube surface and the Pauli matrices �t act in sublattice
space. The SO contribution appropriate for MWNTs fol-
lows by inserting Eq. (10) into Eq. (3), which yields the
manifestly Hermitian term

H 0 � 2iuyF

Z
d �rCy�t2s1 2 t1s2�C . (11)

We take the magnetic field parallel to the tube axis and
include both orbital and Zeeman contributions [16].

The full Hamiltonian can then be diagonalized. The dis-
persion relation contains four branches, e��k� � 6e6�k�,
where the 6 signs are independent and

e6�k� � �y2
F�k2 1 Q2� 1 �B�2�2

6 yF
�B2 1 2y2
FQ

2�k2 1 y2
FQ

4�1�2�1�2, (12)

with Q � 2
p

2 u measuring the SO strength and k � j�kj.
Using Eq. (12), the ESR intensity at finite temperature T
reads

I�v� �
21

1 2 e2v�T

Z d �k

8p

P�e1, k; v�d�v 2 e1 1 e2�
e1e2�e2

1 2 e2
2�2

3 �nF�e1� 2 nF�2e1� 2 nF �e2� 1 nF�2e2�� ,
(13)

where nF�e� � 1��1 1 e2�m2e��T � is the Fermi-Dirac dis-
tribution function. The integral in Eq. (13) includes an in-
tegration over the momentum parallel to the MWNT axis
and a discrete summation over the quantized transverse
momenta, k� � �n 2 f��R, where f � pR2B��h�e� is
due to the orbital effect of the applied magnetic field and
the summation extends over integer n. Furthermore, with
v̄0 � v0 2 v and f�v0, k� � y

2
Fk

2 2 �B�2 1 v0�2,
P�v0, k; v� � 2f�v0, k�f�2v̄0, k� ��B�2 2 v0� �B�2 1 v̄0� 2 y2
Fk

2�
2 2y2

FQ
2��B�2 2 v0� �B�2 2 v̄0�f�v0,k� 1 �B�2 1 v0� �B�2 1 v̄0�f�2v̄0, k�� . (14)
As a simple check, forQ � 0, one recovers the expected
d peak from Eq. (13).

The result (13) can be understood in simple physical
terms. The ESR intensity receives contributions from tran-
sitions between states of energy e2 to states of energy e1,
and each contribution is weighted by a factor which takes
into account the occupation of the levels. In order to arrive
at Eq. (13), we have neglected a contribution coming from
transitions between 2e6 and e7 states. This is consistent
206402-3
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FIG. 1. Typical ESR intensity of a MWNT at low tempera-
tures. Parameters in the plot are f � 0, m � 0.1, B � 0.0014,
and yFQ � 0.05, where energies are measured in units of
2p h̄yF�R. The value of B corresponds to a field of 10 T. Note
the frequency units, pointing to a very narrow ESR peak.

because these transitions contribute only for very large fre-
quencies v $ jmj, while the frequency scales relevant to
ESR are much lower. In addition, the signal given by this
contribution is very small in comparison to the term that
we keep.

Inspection of Eq. (13) shows that the ESR spectrum of
a MWNT at low temperatures contains only a single nar-
row asymmetric peak, whereas more structure appears at
higher temperature due to the activation of the transverse
subbands [17]. Here we focus on the low-temperature ESR
spectrum, which is shown in Fig. 1 for typical parameters.
The peak has an asymmetric line shape which strongly de-
pends on temperature. At zero temperature, the intensity
maximum is at the frequency

v0 � eZ

∑
1 2

e
2
Z

2m2 2
y

2
FQ

2B2

4m2e
2
Z

1 O ��eZ�m�3�
∏

,

(15)

where eZ �
p
B2 1 2y

2
FQ2. As is apparent in Fig. 1,

when increasing the temperature, the position of the maxi-
mum slowly moves to smaller frequencies. The linewidth
is of the order of

Dv 	 y2
FQ

2B2�m3. (16)

To conclude, we have presented a theoretical description
of the spin-orbit coupling and the ESR spectrum for 1D
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conductors, in particular for carbon nanotubes. In SWNTs,
spin-charge separation should not be affected by spin-orbit
coupling, and hence we expect a double peak. The peaks
distance and their height provide information about the
spin-orbit coupling strength, and their width points to vio-
lations of spin-charge separation. The ESR spectrum of a
MWNT exhibits only a single narrow peak, whose loca-
tion, line shape, and linewidth provide information about
the Rashba-type spin-orbit coupling and intrinsic electric
fields. The ESR spectra of SWNTs and MWNTs are there-
fore fundamentally different and reflect distinct mecha-
nisms of spin-orbit coupling.
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