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Excitonic Condensation in a Symmetric Electron-Hole Bilayer
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Using diffusion Monte Carlo simulations we have investigated the ground state of a symmetric electron-
hole bilayer and determined its phase diagram at T � 0. We find clear evidence of an excitonic con-
densate, whose stability however is affected by an in-layer electronic correlation. This stabilizes the
electron-hole plasma at large values of the density or interlayer distance, and the Wigner crystal at low
density and large distance. We have also estimated pair correlation functions and low-order density ma-
trices to give a microscopic characterization of correlations as well as to try and estimate the condensate
fraction.
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Electron-hole systems have attracted a lot of interest
over the years [1]. The Coulomb attraction existing be-
tween the two kinds of fermions naturally brings about
pairing and, hence, the possibility of a coherent state [2].
It was soon realized [3] that systems of spatially separated
electrons and holes, such as a bilayer, have a number of ad-
vantages with respect to conventional bulk samples [1] in
which electrons and holes occupy the same region. Thus,
while in a homogeneous semiconductor the excitonic con-
densate would be an insulator [2], in a bilayer supercon-
ductivity is in principle possible [3]. The interest in such
systems has greatly increased in recent years, due to the in-
creasing ability to manufacture high quality semiconductor
quantum well (QW) structures, where electrons and holes
are indeed confined in different regions, between which
tunneling can be made negligible [4]. Also, in a num-
ber of such systems experimental evidence of an excitonic
condensate has been claimed [5–7]. However, even for the
simplest two dimensional (2D) model, i.e., a symmetric bi-
layer, the theory has been concerned so far with mean-field
treatments [3,8,9] based on a BCS-like wave function, with
one exception [10].

In this Letter we report on the first extensive computer
simulations of a symmetric electron-hole bilayer (SEHB).
We have undertaken this study to assess the effect of elec-
tron correlation on the phase diagram of the SEHB and
on the existence of a condensate, which we directly char-
acterize. To perform simulations, we have resorted to
fixed-node diffusion Monte Carlo (FN-DMC) [11,12], a
method which is stable and variational and is known to
yield extremely accurate results for homogeneous elec-
tron systems [13,14]. We should stress that our goal is
to determine the properties of the simplest 2D model, i.e.,
the SEHB, with unprecedented accuracy, also to provide
a benchmark against which approximate many-body treat-
ments may be tested. Therefore, we are not considering
here effects such as finite layer thickness, interlayer tun-
neling, or band anisotropy, which may play an important
role [3,15,16] in describing more realistic QW structures.
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Also, to limit the computational load, we have restricted
our study to three phases: the excitonic phase (EP), the
spin unpolarized two component plasma (2CP), and the
triangular Wigner crystal (WC).

In the absence of magnetic fields, the Hamiltonian of
such an ideal SEHB reads
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where e is the background dielectric constant, d is the
interlayer distance, and me � mh � m� is the common
effective mass of electrons and holes. In the following
we use Ry� � e2�2ea�

B as unit energy, a�
B � h̄2e�m�e2,

and rsa
�
B as unit length. As is well known the parameter

rs, defined in terms of the in-layer areal density n by
pr2

s a�2
B � 1�n, measures the in-layer coupling strength.

In the SEHB one is led to define an additional parameter,
measuring the importance of the interlayer coupling, as
the ratio of the typical interlayer and in-layer Coulomb
energies, namely, g � 1�d. At T � 0, which is the case
considered here, the model is completely specified by rs

and d or g.
In FN-DMC [11] one propagates a trial wave function

CT in imaginary time, to project out the higher energy
components and sample the lowest energy state C0
with the nodal structure of CT . This establishes a cor-
respondence between nodal structure, i.e., trial function,
and phase. To study the EP we resort to a BCS-like trial
function, which is known to provide a good mean-field
description [2,9,17,] both at high and at low density. In
practice we set C

EP
T � D""D##J, where Dss is a deter-

minant of pair orbitals w�re
i,s 2 rh

j,s� and J is a Jastrow
factor, accounting for two-body correlations. We choose
w�r� as the exact numerical solution of the mean-field
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problem [9], as in selected cases we found that this yields
a lower variational energy than other choices [18]. For
the normal phases the trial function is taken as CT �
De

# De
" Dh

# Dh
" J, with Da

s a Slater determinant of one-
particle orbitals (plane waves for the 2CP and Gaussians
localized at the crystal sites [19] for the WC). The Jastrow
factor J � exp�2�1�2�

P
m,n

P0
im,in

um,n�rim,in
�, with the

Greek index denoting particle type and spin projection, is
built using RPA pseudopotentials [20,21].

We have performed DMC simulations for systems with
N � 58 and N � 56 particles per layer, respectively, for
the 2CP and the EP and for the WC, using periodic bound-
ary conditions. Finite size effects have been mitigated as
usual [22] by performing the Ewald summation on the in-
finite periodic replicas of the simulation box and using,
for the 2CP, numbers of particles corresponding to closed
shells of orbitals. We have also carried out variational
Monte Carlo (VMC) simulations, for several values of N
(ranging up to 114 or 120 depending on the phase), to de-
termine the size dependence [23] of the energy. Assuming
that this is the same for VMC and FN-DMC [13,24,25],
we have obtained the FN-DMC energies in the thermody-
namic limit, which we report [26] in Table I for the three
phases that we have studied.

Use of the energies of Table I yields the phase dia-
gram shown in Fig. 1. It is evident that correlation has

TABLE I. Energy per particle of various phases of the SEHB,
in Ry�, according to FN-DMC. All results are extrapolated to
the thermodynamic limit [23].

rs d rE 2CP EP WC

1 0.0 1.69 20.833�8� 20.808�9�
2 0.1 0.84 20.6947�5� 20.6976�7�
2 0.2 1.00 20.6116�7� 20.6006�7�
2 0.5 1.34 20.5405�5� 20.5260�4�
5 0.2 0.57 20.3732�6� 20.3822�2�
5 0.5 0.93 20.3125�2� 20.3104�1�
5 1.0 1.40 20.3009�2� 20.2987�2�

10 0.5 0.68 20.1801�1� 20.181 72�9�
10 1.0 1.23 20.171 53�8� 20.170 85�4�
10 1.5 20.170 35�1� 20.169 47�1�
20 0.05 0.14 20.3275�2� 20.3288�1�
20 0.5 0.50 20.100 51�5� 20.102 27�3� 20.101 57�2�
20 1.0 1.08 20.093 04�1� 20.093 16�2� 20.093 176�8�
20 1.3 1.38 20.092 64�2� 20.092 61�2�
20 1.5 1.51 20.092 60�2� 20.092 48�2� 20.092 533�5�
20 3.0 20.092 45�2� 20.092 354�6�

22 1.0 20.085 33�2� 20.085 484�7�
22 2.0 20.084 82�1� 20.084 770�6�
22 3.0 20.084 78�1� 20.084 767�5�
30 0.5 0.45 20.071 92�2� 20.071 61�2�
30 1.0 1.00 20.064 403�8� 20.064 483�3�
30 1.5 1.48 20.063 833�6� 20.063 921�3�
30 3.0 20.063 77�7� 20.063 827�3�
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FIG. 1. Phase diagram of the SEHB according to the
FN-DMC. Circles, squares, and triangles, respectively, indicate
the stability of the 2CP, EP, and WC. Dashed, gray, and black
lines give approximate boundaries between a pair of phases
obtained from the crossing of the energies at given rs with
varying d. The dotted curve reports an estimate of the 2CP-EP
boundary from an approximate theory [27].

here qualitative effects. Whereas the mean field predicts
stability of the EP with respect to the 2CP everywhere,
at high enough density and/or at large enough distance
FN-DMC predicts the stability of either the 2CP or the
WC. Naively, one would expect that when the interlayer
coupling g � 1�d ø 1 each layer should behave as an
isolated 2D electron gas (2DEG) [28]. This is the case
with the symmetric electron bilayer [20,29,30], for which
the phase diagram of the 2DEG [29] is quickly recovered
as d exceeds 1, and it appears to be the case also for the
SEHB, when one keeps in mind that only the unpolarized
2CP is considered here. The phase diagram turns out to
be fairly robust. Thus, use of the finite-N FN-DMC ener-
gies leaves it essentially unchanged, while use of the VMC
energies brings about only a minor change in the bound-
ary between the WC and the 2CP, which moves at about
rs � 20 for d $ 1.5.

In Table I we have also reported the excitonic radius,
defined by r2

E � �wjr2jw���w jw�. It is evident, from
an inspection of Table I, that a correlation exists between
the stability of the EP and rE being smaller than 1, i.e.,
smaller than the characteristic in-layer length scale. This
points to the importance of in-layer correlations, which
are neglected in mean field [3,9]. Also, it turns out that
in our simulations the exciton is always much smaller than
the side of the simulation box,

p
Np � 13. Thus, our

description of the EP should not be affected by the finite
spacing of the energy levels [10].

A peculiar property of superconductors is the off-
diagonal long-range order (ODLRO) exhibited by the
reduced density matrices in the coordinate space represen-
tation [31]. In a fermion system ODLRO shows up in the
two-body density matrix [31], with the appearance of an
eigenvalue which scales with the number of particles. In
206401-2
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a translational invariant system, such as the SEHB in the
excitonic phase, ODLRO implies for the two-body density
matrix, to leading order in N , the following asymptotic
behavior:

r2�x0
e, x0

h; xe , xh� � aNf��jx0
e 2 x0

hj�f�jxe 2 xhj� ,

jxe 2 xhj, jx0
e 2 x0

hj & j, jxe 2 x0
ej ! ` ,

(2)

where a # 1 is the condensate fraction and j is the range
of the normalized pair amplitude f�jx1 2 x2j�. In order to
estimate the condensate fraction it is convenient to resort
to the projected two-body density matrix

h�x� �
1
N

Z
dxe dxh r2�xe 1 x,xh 1 x; xe , xh� , (3)

which tends to a in the large x limit, as is immediately
found combining Eqs. (2) and (3).

A simple estimator of h�x� is given by

h�x� �
N

Mc

McX
i�1

CT �R0
i�

CT �Ri�
, (4)

with Mc the number of particle configurations used and R0

obtained from the configuration R by rigidly translating an
electron-hole pair [32] by x. In practice, for each R we
generate a few translations x uniformly distributed in the
simulation box and, for better statistics, we also average
Eq. (4) over all electron-hole pairs. As Eq. (4) yields only
a mixed estimate in DMC, we have also performed VMC
calculations to get extrapolated estimates [34] according to
hextr�x� � 2hDMC�x� 2 hVMC�x�.

An illustration of our results for h�x� is given in Fig. 2.
Indeed, h�x� appears to saturate at large x. In the absence
of exact information on its asymptotic form, we have fitted
its tail to a 1 A�x2, x $ 5 and estimated the condensate
fractions reported in Table II for the cases studied. It is
evident that in-layer correlation, which is absent in mean
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FIG. 2. Projected two-body density matrix of the SEHB at
rs � 5, according to FN-DMC and BCS mean field, for N �
58. The full curves are fits to the tails of the simulation data
(see text and Table II for details).
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TABLE II. Condensate fraction a of the SEHB according to
FN-DMC (extrapolated estimate) and VMC, for a system with
N � 58. Here d̃ � drs is the interlayer distance in units of
a�

B. Also reported are the BCS mean-field prediction and, for
FN-DMC, the reduced x2 of the fit yielding the condensate
fraction (see text).

rs d̃ a �BCS� a �VMC� a �FN-DMC� x2

2 0.2 0.55 0.187(4) 0.284(9) 0.59
5 1.0 0.74 0.151(2) 0.215(4) 0.22
5 2.5 0.48 0.095(3) 0.108(5) 0.34

20 1.0 0.98 0.027(1) 0.020(2) 0.47

field, causes a substantial reduction of the condensate frac-
tion — a reduction which becomes more pronounced with
increasing the in-layer coupling rs, at given interlayer dis-
tance, and to a lesser extent with increasing the interlayer
distance, at given rs. This effect is particularly strong
at large coupling, yielding the essential suppression of
the condensate at rs � 20 and d � 0.05, with a � 0.02
whereas in mean field a � 1.

Additional insight into the nature of the phases of the
SEHB is provided by the pair correlation functions, whose
features we briefly summarize here. As the two layers are
brought together from infinity interlayer interaction pro-
duces a substantial buildup in interlayer correlations and
the screening and weakening of intralayer correlations, as
for the electron bilayer [20,29,30]. However, while geh�r�
and g

""
eh�r� monotonously increase with decreasing d, near

the origin, g
"#
eh�r� first develops a correlation hole and then

by further diminishing d develops a peak. This behavior,
which becomes particularly marked at large coupling as is
evident from Fig. 3, might be interpreted as a tendency to-
ward biexciton formation for large rs and small d. In fact,
g
"#
eh�r� gives correlations between unpaired ("#) electrons

and holes and, indirectly, between " and # excitons.
To summarize, by performing extensive quantum simu-

lations we have shown that correlation has important
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FIG. 3. Spin resolved electron-hole pair correlation function
of the SEHB at rs � 20, according to FN-DMC.
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qualitative effects in determining the phase diagram and
the excitonic condensate of the SEHB, with respect to
mean field. Here, we have chosen not to consider spin
polarized phases nor inhomogeneities of spin or charge,
such as in density waves and in liquid-vapor coexistence.
We shall explore some of these interesting phenomena in
future investigations.
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