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Interface Stress in Polycrystalline Materials: The Case of Nanocrystalline Pd
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Based on a generalization of a capillary equation for solids, we develop a method for measuring the
absolute value of grain-boundary stress in polycrystalline samples having a large interface-to-volume
ratio. The grain-boundary stress in nanocrystalline Pd is calculated from x-ray diffraction measurements
of the average grain size and the residual-strain-free lattice spacings, yielding a value of 1.2 6 0.1 N�m.
The random distribution of crystallite orientations in the sample suggests that this value is characteristic
of high-angle grain boundaries in Pd.
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When a solid with a fine-scale microstructure is elasti-
cally deformed, work is performed against volume (bulk)
forces and interface forces. Even if there is no exter-
nal load applied, mechanical equilibrium prescribes that
stresses in the bulk are required to compensate interface
stresses. In a conventional polycrystalline material, the
bulk stresses arising from interface stresses are negligible;
however, for a solid with a nanometer-scale microstruc-
ture, interface stresses can no longer be neglected, because
they induce bulk stresses on the order of f�L, where f
is the scalar interface stress and L denotes a characteris-
tic length scale of the microstructure (such as the average
crystallite size). Classically, the interface stress fij is de-
fined as the derivative of the interfacial free energy g with
respect to the elastic strain eij tangential to the interface
plane: fij � ≠g�≠eij [1–3]. Unlike g, which is a scalar
quantity and always positively valued, the interface stress
fij is a tensor with entries that may have either sign. A
more general notion of interface stress permitting a dis-
continuity in the displacement across an internal interface
has been discussed by Gurtin et al. [4].

The rapid development in our theoretical and experimen-
tal understanding of stresses at solid surfaces and the role
they play in phenomena such as surface reconstruction,
epitaxial growth, and the self-organization or stabilization
of mesoscopic structures have been reviewed by Ibach [5].
Comparatively rudimentary is our understanding of the in-
fluence of internal interfaces on intrinsic stresses and their
consequent impact on the properties of materials with a
large interface-to-volume ratio, such as multilayered thin
films or nanostructured materials [6]. Equations for cal-
culating the volume stresses induced by interface stresses
have been derived for special sample geometries [7] and
for general microstructures subjected to a hydrostatic load
[8]. Several recent experiments have taken advantage of
such relations to obtain experimental values for f [9–13];
in particular, the relative change of grain-boundary stress
upon hydrogen loading of nanocrystalline Pd has been in-
vestigated [11]. Nevertheless, many aspects of the inter-
face stress remain largely unexplored in experiment, such
as the absolute value of f obtained from the study of its di-
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rect mechanical action on the crystallites adjoining a grain
boundary.

In this paper we describe a method for determining the
absolute value of the grain-boundary stress in a polycrys-
talline sample made up of nanometer-sized grains (crystal-
lites), i.e., a so-called nanocrystalline (NC) material. Our
approach is based on a generalized capillary equation de-
rived by Weissmüller and Cahn [8] using the principle of
virtual work. Their central result was obtained by relating
the hydrostatic components of the volumetric stress tensor
averaged over all of the grains in a polycrystalline solid,
sij , to the integrated (average) stresses of the interfaces
contained within the sample:

�DP�V �
2
3

µ
A
V

∂
� f�A . (1)

In Eq. (1), �DP�V denotes the volume-averaged differ-
ence between the local pressure Pint in the sample and
an externally applied hydrostatic pressure Pext, i.e., DP �
Pint 2 Pext. The quantity � f�A is the area-averaged in-
terface stress; in analogy to the scalar pressure P in the
theory of bulk elasticity, in which P � 2Tr�sij�3�, the
scalar interface stress (interface pressure) f is defined as
f � Tr�fij�2�. Finally, A�V represents the total inter-
face area divided by the total grain (bulk) volume. In
Eq. (1), contributions to the volume stress arising from in-
terface junctions, which are one-dimensional elements of
microstructure and second order in A�V , are neglected. We
see from this equation that the mean pressure is indepen-
dent of the spatial arrangement, orientation, and curvature
of the interfaces.

In order to devise a method for measuring the interface
stress in a nanocrystalline sample, we express Eq. (1) in
terms of experimentally accessible quantities. The stereo-
logical identity A�V � 2��L� relates A�V to the average
grain intercept length �L�, which can be obtained directly
from a Fourier analysis of Bragg-peak profiles [14]. Con-
cerning �DP�V , we can derive a relation between the mean
pressure in the bulk and the sample lattice parameter,
which can be measured with high accuracy in a diffraction
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experiment. By inserting the definition of the isothermal
bulk modulus, K21 � 2V21�≠V�≠P�jT , into Eq. (1) and
making use of the relation �DP�V � �Pint�V 2 Pext (see
Eq. (8) in Ref. [8]) together with �DV ��V � 3��Da��a�V ,
in which �a�V is a nonlocal, volume-averaged lattice pa-
rameter, we obtain

�aNC�V 2 a0

a0
� 2

4
9K

� f�A
1

�L�
, (2)

where �aNC�V denotes the lattice parameter of the
nanocrystalline solid with average grain intercept length
�L�, and �a0�V � a0 is the lattice parameter of the
interface-free reference state (i.e., �L� ! `� . We note
that for noncubic polycrystalline microstructures an
effective bulk modulus K� fi K should appear in Eq. (2),
but for cubic materials K� � K � �C11 1 2C12��3, with
elastic constants Cij expressed in the Voigt notation [15].
Equation (2) implies that the interface stress � f�A can be
obtained from the slope of a plot of measured values of
�aNC�V versus 1��L�.

Before attempting to carry out such measurements, it
is important to realize that Eqs. (1) and (2) are valid only
when the volume average extends over the entire specimen
rather than merely a portion of it. Equation (1) was derived
using the principle of virtual work by summing up the in-
dividual amounts of work performed by external, internal,
and interface stresses during a homogeneous deformation.
For sufficiently small deformations, the total work must
vanish in mechanical equilibrium. In general, the internal
stress field sij�r� of a heterogeneous solid is a linear su-
perposition of two stress fields with different physical ori-
gins: (i) the stress conjugated to the strain ´ij�r� resulting
from an externally applied load, and (ii) the stress conju-
gated to the residual strain ´res

ij �r� arising from the elastic
response of a material to an inhomogeneous distribution of
nonelastic strains, such as plastic strains or those induced
by thermal expansion, phase transformations, etc. [16]. As
a consequence, the work WV performed by the total inter-
nal stress can be formally written as

WV �
Z

V
sij�r�´ij �r� dV 1

Z
V
s res

ij �r�´ij�r�dV ,

(3)

with summation over repeated indices. Owing to the
self-equilibrating nature of the residual stresses, the sec-
ond integral in Eq. (3) vanishes as long as the range of
integration extends over the entire sample volume [15],
thus explaining why residual stresses do not appear in
Eq. (1).

If x-ray diffraction is used to determine the lattice pa-
rameters appearing in Eq. (2), it may be impossible, de-
pending on the specifics of specimen geometry, beam cross
section, and available radiation energy, to carry out a mea-
surement that averages over the entire sample volume.
In such a case, the second integral in Eq. (3) no longer
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vanishes, and a derivation analogous to that of Eq. (2), in-
volving work integrals extending over the irradiation vol-
ume Virr, yields an expression for � f�Airr that depends on
the typically unknown value of the residual strain, ren-
dering a determination of the interface stress from lattice-
parameter and grain-size data impossible.

Although determination of the residual-strain tensor of
a given sample is a challenging task, standard methods for
residual-stress analysis [17] allow one to identify scatter-
ing geometries in which residual-strain-free lattice spac-
ings can be measured by diffraction, despite probing a
confined scattering volume Virr. In these geometries, the
residual-stress contribution to WV vanishes even when
Virr , V , because the integrand of the second integral in
Eq. (3) is identically zero. Consequently, we can still use
Eq. (2) to compute the interface stress, provided the quan-
tity �aNC�V is replaced by the residual-strain-free lattice
parameter ��aNC�Virr �0.

The theory of stress analysis by x-ray diffraction pro-
vides an explicit protocol for extracting ��aNC�Virr

�0 values
from measurements of hkl-dependent lattice spacings dhkl .
For a polycrystalline specimen, average values of the latter
can be related to the average strain according to

��´0
33�Virr �

hkl
f,c �

��d�Virr �
hkl
f,c 2 dhkl

ref

dhkl
ref

, (4)

where the prime signifies a laboratory coordinate system
oriented with the z axis parallel to the scattering vector
and azimuthal (f) and polar (c) angles defined relative to
the plane of the sample surface. The term dhkl

ref denotes the
lattice spacings of a reference state, which may be chosen
without loss of generality to correspond to the residual-
strain-free state, i.e., strain contributions arise only from
the homogeneous deformation of all grains by interface-
stress-induced forces. The applicability of such a reference
state to a given experiment must be justified a posteriori.
The scattering geometry �f, c� permitting measurement
of residual-strain-free (but interface-stress-modified) hkl
lattice spacings is specified by the condition

��´033�Virr�
hkl
f,c � 0 . (5)

As demonstrated in Ref. [18], Eq. (5) may be solved
by considering the ensemble-averaged (i.e., f-averaged)
strain ��´033�Virr�

hkl
c � �1�4�

P3
n�0 ��´033�Virr�

hkl
np�2,c , which

can be shown to vanish for c values equal to �c0�hkl �
arcsin�2nhkl��1 1 nhkl��1�2. The nhkl parameters are
hkl-dependent Poisson numbers, which can be computed
for a given material according to the theory of x-ray
elastic constants [19]. This solution to Eq. (5) relies
upon the applicability of Hooke’s law and equations
of mechanical equilibrium in conjunction with the sup-
position that the nanocrystalline solid is statistically
homogeneous and isotropic within Virr. A sample char-
acterization must be carried out to determine whether or
not these requirements are met. We conclude that the
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lattice parameters appearing in Eq. (2) can be replaced
by their irradiated-volume-averaged equivalents, provided
residual-strain-free values ��aNC�Virr �0 are determined
from lattice spacings ��dNC�Virr�

hkl
�c0�hkl , where an average

is performed at each hkl over the scattering geometries
�np�2, �c0�hkl� for n � 0, 1, 2, 3.

We now demonstrate the applicability of this approach to
the experimental determination of the interface stress � f�A

in a sample of nanocrystalline Pd. A disk-shaped speci-
men 8 mm in diameter and about 0.1 mm thick was
prepared by the inert-gas condensation technique and
subsequently preannealed at 60 ±C for 24 hours in order
to equilibrate the grain boundaries [20]. Lattice constants
were extracted from diffraction measurements performed
on a Huber powder x-ray diffractometer equipped with a
Eulerian cradle and pinhole collimators. The Cu-Ka1,2
radiation scattered by a sample held at 20 ±C with
a stability of 60.01 ±C was detected by an energy-
dispersive solid-state detector. Statistical isotropy of the
specimen was verified by the radial symmetry of the
isointensity contours of (111) pole figures. The average
grain intercept length �L� was found to be 	10 nm
by means of the standard Warren-Averbach analysis
(compare details in Ref. [14]). Annealing the sample in
a sealed quartz tube filled with He (99.999%) induced
grain growth [21], corresponding to marked increases
in �L�.

Although the true lattice parameter of a crystalline ma-
terial is independent of the Miller indices hkl, the same
does not in general apply to the lattice constants ahkl

computed from individual lattice spacings dhkl. A reli-
able estimate for the hkl-independent lattice parameter is
obtained by plotting the ahkl values against an appropri-
ate extrapolation function [22]. Such a procedure is illus-
trated in Fig. 1 for nanocrystalline Pd in the as-prepared
state, where the extrapolation function was chosen to cor-
rect the error induced by displacement of the specimen
from the focal plane of the diffractometer. Each data point
represents the average over four diffraction measurements
carried out at the angles f � np�2 �n � 0, 1, 2, 3� and
�c0�hkl, the values of which are given in Table I. The
strong scatter in the raw data points of Fig. 1 was found
to arise from the presence of stacking faults in the speci-
men. After correcting the lattice constants for stacking
faults as described in Refs. [23–25], we obtain a set of
data points lying nearly along a straight line. The y inter-
cept of a linear fit to the latter gives the residual-strain-free
lattice parameter ��aNC�Virr�0 � �aNC�V of the nanocrys-
talline solid. For a sample containing two-dimensional
faults, the Warren-Averbach analysis yields the average
intercept length of the coherent scattering domains, the
so-called effective intercept length �L�eff, which is smaller
than the true intercept length �L�true, owing to the peak
broadening induced by stacking faults and/or twin bound-
aries incorporated in the individual nanocrystallites [23].
The quantity �L�true was determined from �L�eff using the
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FIG. 1. Lattice constants ��aNC�Virr �hkl plotted relative to the
extrapolation function cos2u� sinu, where u denotes the Bragg
angle. All ��aNC�Virr �hkl values were determined at the corre-
sponding angles �c0�hkl listed in Table I (�: raw data; �: data
corrected for stacking faults). The y intercept of the least-
squares fit line (solid line) yields the lattice parameter �aNC�V of
the nanocrystalline solid. For comparison, we include the lattice
parameters of a sample annealed at 600 ±C for use as a reference
material (�, dashed line).

procedure of Ref. [23], thus permitting �aNC�V to be plot-
ted as a function of 1��L�true (Fig. 2). The slope of a fit
of Eq. (2) to the data points gives � f�A � 1.2 6 0.1 N�m
for K � 192 6 2 GPa [26]; possible small contributions
of two-dimensional faults to �aNC� have been neglected.
From Eq. (1) we compute a compressive bulk pressure of
0.17 6 0.03 GPa in the as-prepared state. In the limit
�L�true ! `, �aNC�V should tend toward the lattice pa-
rameter of a Pd single crystal, a0 � 389.019 6 0.002 pm
[27]; extrapolation of the fit line in Fig. 2 yields a value of
389.02 pm for a0, which is in remarkably good agreement
with the literature value. Moreover, independent measure-
ment of a disk-shaped coarse-grained reference sample of
Pd found a lattice parameter of 388.99 pm. This consis-
tency justifies both the assumption of statistical homogene-
ity as well as the supposition that interface stress generates
a homogeneous deformation of the nanocrystallites upon
which it acts. Finally, our analysis suggests that the in-
terface stress value as determined from the slope of Fig. 2

TABLE I. X-ray elastic constants nhkl of Pd, computed for the
various hkl lattice planes according to the method in Ref. [19].
The angles �c0�hkl were calculated from the nhkl constants using
the formula given in the text.

hkl nhkl �c0�hkl (deg)

111 0.36 46.7
200 0.41 49.5
220 0.38 47.6
311 0.39 48.5
222 0.36 46.7
400 0.41 49.5
331 0.37 47.4
420 0.39 48.4
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FIG. 2. Lattice parameter �aNC�V of nanocrystalline Pd (�)
plotted as a function of the reciprocal average grain intercept
length. The solid line is a least-squares fit to the data points.
Also shown are the literature value for Pd (�) and the lattice
parameter measured for the coarse-grained reference sample of
Fig. 1 (�).

is independent of grain size for all grain sizes larger than
10 nm.

Since � f�A represents an orientational average over
many different interfaces, we may assume that its value is
characteristic of the predominant type of grain boundary —
namely, high angle [28]— in the specimen. This con-
clusion is supported by the fact that calorimetric mea-
surements performed on an as-prepared nanocrystalline
Pd sample yielded a value of 0.8 6 0.1 J�m2 for the
enthalpic part of the area-weighted grain-boundary energy
�g�A (compare details in Ref. [29]), which agrees well
with typical values for high-angle grain boundaries in Pd
[30,31].

Finally, we note that the value obtained in this paper
for the interface stress in nanocrystalline Pd differs sig-
nificantly from � f�A � 0.1 6 0.1 N�m, as measured by
Weissmüller and Lemier [11]. This discrepancy is most
likely caused by the presence of irreversibly dissolved hy-
drogen in their specimens [32], since it was found that the
sign and magnitude of the interface stress is significantly
affected by the segregation of hydrogen to the core region
of grain boundaries.
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