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We propose a unified treatment of the step bunching instability during epitaxial growth. The scaling
properties of the self-organized surface pattern are shown to depend on a single parameter, the lead-
ing power in the expansion of the biased diffusion current in powers of the local surface slope. We
demonstrate the existence of universality classes for the self-organized patterning appearing in models
and experiments.
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The scale invariance of the fluctuations of growing
or evaporating surfaces, known as kinetic roughening
[1,2], has been extensively studied theoretically for both
high-symmetry [3] and vicinal surfaces [4]. These surfaces
are often found to be unstable [5]. In particular, vicinal
surfaces may undergo a kinetic step bunching instability
[6–9], when the regular step train decomposes into alter-
nating low and high step-density regions, and then evolves
into a self-organized, scale invariant pattern [10]. These
patterns may be ideally used as a template for building
anisotropic nanostructures, such as quantum wires. Hence,
besides the fundamental interest, understanding the mi-
croscopic origin of step bunching is crucial for nanotech-
nology applications. Several scenarios for kinetic step
bunching during growth or evaporation have been inves-
tigated: electromigration [11], Schwoebel barriers (in
evaporation) or “inverted” Schwoebel barriers (in growth)
at step edges [12], multispecies coupling by chemical
reactions [13], dimer formation [14], and diffusion along
step edges [15]. Using the continuum approach [10], we
show that independently of the microscopic origin, the
overall scaling behavior of the surface profile is uniquely
determined by the nonequilibrium biased diffusion cur-
rent, first discussed by Villain [5]. Specifically, the surface
evolution is shown to depend on a single parameter, the
power r of the leading term in an expansion of the
nonequilibrium current in powers of the local surface
slope. Since this expansion is dictated by the microscopic
behavior of the system, the investigation of the scaling of
step bunching reveals which class of microscopic models
the macroscopic features observed belong to. This is the
analog of the universality classes of equilibrium critical
phenomena [16]. Step bunching is then characterized by
scaling exponents, that take specific values for each uni-
versality class. The present work addresses all situations
in which the current is a function of the local surface slope.
This includes all the scenarios mentioned above, as well
as impurity induced bunching. In the case when elastic
constraints become important, as in heteroepitaxy, the
current may be a nonlocal function of the slope, and/or of
the surface curvature. Such situations may be treated by a
similar approach as the one used here, but they fall outside
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the scope of the present work. The examples studied in
the present Letter cover both models and experiments, and
reveal the existence of three universality classes for the
self-organized patterning of unstable vicinal surfaces.

In the framework of the continuum approach [10], the
crystal surface is described as a smooth function h�x, t�,
whose time evolution is governed by an equation of the
form

≠h

≠t
� F 2 = ? J , (1)

where F is the deposition rate, and J the surface diffu-
sion current. The latter contains in general a smoothing
“equilibrium” part, and a destabilizing “nonequilibrium”
part. The former is due to the Gibbs-Thomson effect
[2]. Indeed, the surface free energy of a crystal at a vic-
inal orientation (next to a singular, nonrough facet) reads
F �

R
dSf�jmxj�, where mx � ≠h�≠x is the local slope,

and the surface free energy density f has the form

f�mx� � f0 1 gjmxj 1 Ajmxj
n11. (2)

The local surface slope mx is equal (in absolute value) to
the local step density 1��, g is the step stiffness, A��n

is the step-step interaction potential, and � is the interstep
distance. The n power generalizes the usual 1��2 form
of the interaction that applies to entropic and elastic re-
pulsion as well. Assuming that the steps are straight, any
local deviation from a perfect staircase of equidistant steps
is given by the Gibbs-Thomson formula Dm � 2≠f0�≠x
[2]. For a vicinal surface of positive slope, mx . 0,
Eq. (2) yields the excess chemical potential Dm � 2�n 1

1�A≠�mn
x ��≠x. Thus, the step-step interactions smooth out

the fluctuations of the interstep distances, by creating a sur-
face particle current

Jeq � 2
Dsceq

kBT
=�Dm� �

Dsceq

kBT
�n 1 1�A=2�mn

x � . (3)

The latter replaces the “Mullins-type” curvature driven cur-
rent, that is appropriate for a surface above the roughening
temperature [2].

The instability appears due to kinetic, nonequilibrium
effects that induce a biased diffusion current, Jneq�mx�,
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that has to be computed from a microscopic model. What-
ever its form, letting J � Jneq�mx� in Eq. (1), and lineariz-
ing it for small fluctuations about a uniform positive slope
m0, that is for h�x, t� � m0x 1 e�x, t� 1 F, yields

≠e

≠t
� n�

≠2e

≠x2
(4)

where n� � 2�dJneq�mx��dmx�m0 . Since Eq. (4) with a
negative coefficient n� implies an unstable increase of the
fluctuations, it appears that a vicinal surface growing by
step flow is unstable with respect to step bunching if

�dJneq�mx��dmx�m0 . 0 . (5)

The continuum description allows us to give a unified treat-
ment of the step bunching instability for all systems char-
acterized by a nonequilibrium current which is a local
function of the slope. In particular, the scaling proper-
ties of the time evolution, as well as of the long-time self-
organized bunch structure, can be computed. For these
systems, the destabilizing, nonequilibrium current has the
general form

Jneq � mxJ �mx� , (6)

where J �mx � is determined by the specific kinetics of the
system. In general, J �mx� vanishes with vanishing terrace
width, and tends to a constant for a flat surface. The current
induced by step-edge diffusion (SED) may differ slightly
(see below). In the spirit of Landau’s theory of critical
phenomena [16], we expand the current in powers of mx

for small slopes, or of 1�mx for large slopes, and consider
the leading term. In both cases, the current behaves then as
Jneq � J0 1 Bm

r
x , with J0 � 0 (SED may differ having

J0 fi 0), and r taking either positive or negative values for
the small and large slope limit, respectively. Since only the
divergence of the current enters the growth equation, we
can disregard the constant anyway and write, without loss
of generality:

Jneq � Bmr
x , (7)

with Br . 0 to satisfy the instability condition Eq. (5)
for mx . 0. Note that the sign of the nonequilibrium
current itself determines the stability of the vicinal surface
with respect to step meandering, and eventually mounding
[10]. A growing (evaporating) surface of positive average
slope is stable against meandering if Jneq , 0 (Jneq . 0,
respectively). Then, in general, a positive coefficient B in
Eq. (7) implies that the growing (evaporating) surface is
simultaneously unstable against step meandering and step
206103-2
TABLE I. Predicted exponents for the observed universality classes of step bunching, and for
general step-step interactions.

r � 22 r � 21 r � 1 r, n

a 3�2 5�3 3 �2 1 n 2 r���n 2 r�
b 3�7 1�2 3�2 �2 1 n 2 r���2�n 1 1 2 2r��
z 7�2 10�3 2 2�n 1 1 2 2r���n 2 r�
d 1�7 1�5 1 1��n 1 1 2 2r�
g 1�3 2�5 2�3 2��2 1 n 2 r�
bunching if r . 0 (r , 0, respectively). Again, SED is
exceptional, since the sign of the constant J0 determines
the stability with respect to meandering in this case.
Putting together the equilibrium and the nonequilibrium
currents, and removing the constant deposition rate by
transforming to a uniformly comoving frame, we obtain
the generic evolution equation for an unstable vicinal
surface:

≠h
≠t

� 2B
≠

≠x
mr

x 2
Dsceq

kBT
�n 1 1�A

≠3

≠x3 �mn
x � . (8)

Differentiation of both sides with respect to x finally yields
the evolution equation of the local step density mx :

≠mx

≠t
� 2B

≠2

≠x2 mr
x 2

Dsceq

kBT
�n 1 1�A

≠4

≠x4 �mn
x � . (9)

Now, we look for scale-invariant solutions of Eq. (9) [1].
Scale invariance means that, if we compare two bunches
whose widths differ by a factor l, W2 � lW1, the respec-
tive bunch heights h1, h2 differ by a factor la . In par-
ticular, if the scaling factor l depends on time, l � t1�z ,
so that the bunch width grows with time as W � t1�z , the
bunch height also grows as h�lt� � lbh�t�. These rela-
tions define the exponents a, z, and b � a�z, and can be
summarized in the scaling form h�x, t� � ta�zH�x�t1�z�.
The exponents are then determined by requiring Eq. (9) to
be independent of l, after rescaling of x, t, and h. For the
physically most interesting case n � 2 we obtain

a �
4 2 r

2 2 r
; z � 2

3 2 2r

2 2 r
; b �

1
2

4 2 r

3 2 2r
.

(10)

The form of the exponents for any n is given in Table I.
To describe the scaling of the local bunch slope mx ,
it is convenient to introduce another exponent, d.
Since mx � xa21 � t�a21��z � td, we obtain d �
1��3 2 2r�. When the instability evolves into a self-
organized state, the current may be made to vanish by
a stationary surface profile h0�x� � xa�Q, where the
dimensionless coefficient Q contains the physical parame-
ters. Inserting this scaling form into Eq. (8) and letting
≠h�≠t � 0, we obtain Q � �6DsceqA��kBTB��1��42r�.
Another scaling relation that is quite important for the
analysis of experimental results concerns the average
distance between steps in a bunch, �b, as a function of
the number of steps in a bunch, N . If we assume that
�b scales like 1�mx , and define the exponent g through
�b � N2g, we find g � 2��4 2 r�.
206103-2



VOLUME 88, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 2002
We conclude that all the exponents are uniquely deter-
mined once r is chosen. The determination of the expo-
nents allows us to find out the universality class, that is the
value of r and the leading behavior of the nonequilibrium
current, for the system under scrutiny. In order to show
how this may work, we analyze a number of situations
where step bunching has been investigated in detail, either
experimentally in real system, or in models. We will see
that only three universality classes for step bunching seem
to emerge, corresponding to r � 22, 21, 1, respectively.
The scaling exponent values for these universality classes
in case of n � 2 are summarized in Table I.

The r � 22 universality class.—It is well known that
at least in metal systems, SED may be the fastest kinetic
process. We follow Politi and Krug [15] in arguing that the
SED would induce a destabilizing (uphill) current, inde-
pendent of the slope in the large-slope limit, and vanishing
linearly with mx in the small-slope limit [15]. The char-
acteristic length scale �c that separates large from small
slopes, is identified as the distance between islands on
terraces: in other words, when mx , 1��c, step flow is
replaced by island nucleation on terraces. In the inter-
mediate region between the large- and small-slope limit
we propose an interpolation formula for the biased dif-
fusion current based on the results of Ref. [17], that dif-
fers from Politi and Krug’s [15]. It reads Jsed�mx � �
B�cjmxj tanh�1���cmx��. Note that step flow is always un-
stable towards bunching, since dJsed�dmx is always posi-
tive. In the step flow regime mx . 1��c, the current
behaves asymptotically as Jsed�mx� � J0 2 m22

x , so that
r � 22 is expected in this case. To check the correspond-
ing exponents (see Table I), we have performed kinetic
Monte Carlo (KMC) simulations, whose details will be
reported elsewhere, of step-flow growth in the presence of
strong SED. Step bunching is indeed observed. Following
Ref. [18], we compute the mean distance between steps in
the bunches, �b as a function of the deposition time. The
result is shown in Fig. 1 (circles), it compares well with
the power-law behavior with d � 1�7 of Table I.

The r � 21 universality class.—Until recently, it was
believed that kinetic bunching during growth or evapora-
tion might only be a consequence of the asymmetric stick-
ing at steps, as first discussed by Schwoebel [12]. Indeed,
assume that a diffusing particle attaches to a step with a
probability that is larger from the upper step side than from
the lower one (downhill diffusion bias). This assumption
is usually called “inverse Schwoebel effect” (ISE). On the
opposite, when the incorporation probability of a particle
at a step is reduced from the upper side, with respect to the
lower side, one has the uphill diffusion bias and “normal
Schwoebel effect” (NSE). It is straightforward to show
that the ISE leads to step bunching during growth, while
the NSE leads to step bunching during evaporation of the
step train. When the ISE and the NSE are very strong, the
biased diffusion current behaves as JSE�mx � � m21

x [10],
yielding r � 21. The same m21

x form of the biased diffu-
sion current has been found by Stoyanov [19] for electro-
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FIG. 1. The average terrace width inside a bunch, �b , as a
function of the deposition time, computed from KMC simula-
tions assuming different microscopic models of epitaxial growth.
(i) Step-edge diffusion (open circles). (ii) Inverse Schwoebel
effect (open triangles). (iii) Two-particle model (open inverted
triangles). (iv) Step-edge diffusion and attraction to kinks (solid
squares). Lines are drawn according to the power laws predicted
for the r � 22, r � 21, and r � 1 universality classes,
respectively.

migration of adatoms during growth without desorption.
To check the predictions of Table I, we investigate step
bunching induced by strong ISE in KMC simulations. The
resulting mean terrace width in the bunches, �b , as a func-
tion of the deposition time is shown in Fig. 1 (open trian-
gles). The exponent d � 1�5 is in agreement with these
data.

The r � 1 universality class.— In many growth pro-
cesses, several diffusing species exist on the surface [13].
Two of us [13] have shown that step bunching may occur
if at least two kinds of diffusing particles are present on
the surface, and these adparticles experience a NSE at
step edges. Particles of one kind are deposited on the
surface from the vapor or a beam (the “precursor”), while
the other kind (the “growth unit”) is produced as the
result of a chemical reaction involving the precursor. Step
bunching is due to the coupling between the densities
of precursors and growth units. This coupling gives rise
to a nonequilibrium current that, in the region where
step bunching shows up, behaves as J2p � Fx2

Bmx ,
where F is the deposition rate of precursors, and xB

is the precursor surface diffusion length. One sees that
r � 1 in this case. Another situation in which r � 1
is expected, corresponds to growth (evaporation) with a
weak inverse (normal) Schwoebel effect (WSE). Indeed,
the current has in both growth and evaporation the form
JSE � 2DFdS�1 1 dSmx�21, where dS is a charac-
teristic length scale given by the ratio D�k between
the adatom diffusion constant D and the (asymmetric)
attachment coefficient k to the step edge, and DF is
the supersaturation [2]. Then, WSE implies dS ø �, so
that JWSE � 2DFdS�1 2 dSmx�. We note that in the
opposite limit dSmx ¿ 1 one recovers the JES � m21

x
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behavior leading to the r � 21 universality class (see
above). In yet another context, Stoyanov and Tonchev
[11] derived from a modified Burton, Cabrera, and
Frank (BCF) equation for electromigration-induced
bunching a nonequilibrium current of the form Jel �
22DceqFmx��kBT�, where F is the strength of the elec-
tromigration force. Bunching of steps is then predicted
when the force F acts in the step-down direction. The
last example of r � 1 behavior is provided by a model
in which SED is fast, and atoms are attracted to kinks
from the two nearest neighbor sites on the lower side of
the step. This asymmetry of the adatom incorporation
at kinks creates a biased diffusion in the uphill direction
of the form Jneq � mx , that induces step bunching in
KMC simulations of step-flow growth at high temperature
(details will be given elsewhere). For this model, as well
as for the two-particle model with NSE [18], we compute
the average terrace width in the bunches, �b , as a function
of time (see Fig. 1, solid squares and open inverted
triangles, respectively). The resulting behavior compares
well with the prediction d � 1 for the r � 1 universality
class. Note also that the predictions g � 2��n 1 1� have
been confirmed by the numerical solution of the BCF
equations of step motion [11] for the electromigation
problem with 1��n step interactions.

Experiments.—Step bunching is very often observed in
experiments, but rarely characterized quantitatively. We
list in the following the studies we are aware of. Krishna-
murthy et al. [6] have made a detailed study of step bunch-
ing evolution during the epitaxial growth of GaAs�AlAs
multilayers on GaAs(110) substrates miscut towards �010�.
They report measurements of the bunch density 1�W �
t21�z and the bunch height N � tb as a function of depo-
sition time. Their data agree with b � 1�2, z � 10�3, as
well as with b � 3�7, z � 7�2, which would class this
system either in the r � 21 (ISE) or the r � 22 (SED)
universality class.

Schelling et al. [20] have measured the bunch height N
as well as the period W of the bunch structure as a func-
tion of deposition time in Si(001) homoepitaxy on sub-
strates miscut towards �110�. As for the previous case,
inspection of their data (Fig. 3a of Ref. [20]) suggests that
this system may fall either in the SED �r � 22� or the
ISE �r � 21� universality class. The latter seems to be
in contradiction with the observation of mounding at low
temperatures in the same system, which is incompatible
with an ISE, as well as with the investigation by Latyshev
et al. [9] of step bunching during evaporation. Indeed,
Latyshev et al. report that step bunching during direct cur-
rent (dc) heating of vicinals of Si(001) is independent of
the dc direction, which suggests that the instability is due
to a NSE [2]. The exponents b and g are found to be
b � 0.53 6 0.05 and g � 0.46 6 0.05, respectively. In-
spection of Table I shows that these exponents are not far
from the values b � 0.5 and g � 0.4 for r � 21 (sug-
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gesting the existence of a NSE, since they refer to evapo-
ration). Of course, Si(001) is a complicated system with
anisotropic diffusion and a detailed model study of its in-
stabilities is obviously needed.

Step bunching induced by dc heating has been thor-
oughly investigated for vicinal surfaces of Si(111) [21].
The bunching appears here to depend in a complex way
on the electric current direction, and on the temperature.
When the instability is caused by an electric current in
the step-down direction, experiments show that the facets
between steps grow as W � t1�2, so that z � 2. Fur-
thermore, the experimental data fit the scaling relation
�b � N2g with g � 0.69. Table I suggests that the sys-
tem belongs to the r � 1 universality class, at least when
the electric current is step down.
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garian Academy of Sciences, 1113 Sofia, Bulgaria.
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