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The melting of cold, ordered arrays of up to 10 000 charges, confined in external fields, has been
studied in simulations. The latent heat associated with melting and the behavior of the specific heat were
obtained, along with the spatial correlation function g�r� with respect to neighbors and the diffusion
rates, both as a function of temperature. The melting temperatures of finite arrays of ions are found to
be lower than that for infinite Coulombic matter, by an amount that depends on the number of charges
and on the fraction of ions in the surface layer, in particular.
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The fact that an infinite array of like charges forms an
ordered state has been known for a long time [1] and has
been explored in computer simulations since the early days
of large-capacity computers [2,3]. The form of ordering is
body centered cubic for infinite Coulombic matter. Simu-
lations have shown [2–5] that there is a phase transition
from order to a liquid state at a well-defined temperature of
T � 1�173 in units of q2�aWS (where q is the charge and
aWS is the Wigner-Seitz radius, with 4�3pa3

WS � 1�r, r

being the density). Since the properties of these Coulomb
systems scale with density, it is customary to define the
reciprocal temperature in terms of the dimensionless quan-
tity G:

G �
q2�aWS

kT
, (1)

where k is Boltzmann’s constant. The latent heat associ-
ated with this phase transition has also been explored (see,
for instance [5]). Note that G is a dimensionless parameter
where the temperature depends on the density. At the den-
sities typical of ion traps where aWS � 10m this transition
takes place in the milliKelvin regime. For a general review
of the properties of such plasmas, see [6].

Finite clouds of ions show ordered structures with a dif-
ferent form of ordering. For instance, with a harmonic (and
isotropic) confining potential that is representative of ion
traps, cold particles form a cloud with a well-defined sur-
face, constant macroscopic density, with well-defined con-
centric shells in the interior [7]. The surface layer and each
(equally spaced) shell contain ions in a pattern of equilat-
eral triangles. The triangles in the different shells cannot
align perfectly; the pattern is reminiscent of the “hexatic”
ordering in liquid crystals. Such ordering in trapped ions
has been observed in simulations [7,8] and in the labora-
tory [9]. For spherical clouds containing more than about
20 000 ions, there are some 20 or so concentric shells, but
then, for larger clouds, bcc ordering that is characteristic
of infinite matter appears again in the interior [10].

The melting of such finite clouds had not been stud-
ied previously. While a finite system cannot form a sharp
phase transition, there clearly is a transition between a dis-
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ordered and an ordered phase. Figure 1 displays the pat-
tern of the outer two shells for an isotropically confined
10 000-ion system, its radial density, and the spatial corre-
lation function g�r� from molecular dynamics simulations
at three temperatures: frozen, liquid, and gaseous. The
transition from order to disorder might be expected to be
different from that in infinite matter, both because the sys-
tem is finite and because the form of ordering is different.
This is the first report of such studies and may serve as a
guide to future experiments and as a prototype for melting
of finite systems with a long-range interaction.

Simulations have been carried out for a system of
10 000 ions that was allowed to find a minimum in its
potential energy by allowing the particles to propagate
forward in time, gradually converting potential energy
into kinetic energy, and then scaling down velocities. This
procedure was repeated until the system reached a value
of G of about 30 000.

Starting with such a cold system, predetermined incre-
ments of energy were added. In each successive step
the previous (colder) spatial configuration was used, and
each ion was assigned a random velocity picked from
a Maxwell-Boltzmann distribution with the desired new
mean energy. The system was then allowed to propagate
for a sufficiently long time to establish a new equilibrium
as the increase in kinetic energy dissipated partially into
potential energy. The simulation had to be run for a suffi-
ciently long time to ensure that the new equilibrium values
could be extracted with reasonable accuracy. At the lowest
temperatures, up to 1000 plasma periods or �100 000 time
steps were required to establish an equilibrium value with
confidence, while above the melting temperature equili-
bration was faster. Energy increments were smaller in the
vicinity of the melting point and larger elsewhere.

The potential energy U is

U �
X

i

1�2Kqr2
i 1

X

i,j
ifij

q2�rij 2 U0 , (2)

where Kq is the harmonic force constant of the (isotropic)
confinement, ri are the radial coordinates of the ions with
respect to the origin, rij are the separations between pairs
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FIG. 1. On top, the outer two layers of ions are displayed
for a 10 000-ion system. The ions in the outermost layer are
shown in black, and the next layer in gray. On the left, a cold,
ordered array is shown, while on the right a disordered one at
high temperature, with the ions in corresponding radial intervals
shown. The middle box shows the radial density within the
ion cloud at three different temperatures with the vertical scales
displaced for visibility. On the bottom, the correlation function
g�r� is shown, at the three temperatures. For the lower two boxes
the distance scale is in units of the Wigner-Seitz radius aWS.

of particles, and U0 is the minimum of potential energy
found by extrapolating the results to zero temperature.
This zero may not be the “true” ground state of this sys-
tem [11]; however, the energy differences between minima
in the potential-energy surface are negligibly small in the
present context. The behavior of the potential energy (di-
vided by the temperature), as a function of kinetic energy
is shown in Fig. 2 together with the specific heat C �
DH�DT , where H is the total heat content of the system
(in the ideal gas limit, C � 3�2, while at low temperatures,
where potential and kinetic energies are equal, C � 3).
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FIG. 2. The total energy of a system of charges is shown on
top for an infinite system of ions from Ref. [5] as open circles,
and for a 10 000-ion system as filled circles. The lower plot is
the corresponding specific heat. Note that at low temperatures
both approach the value of 3.0. The temperature scale is in units
of 1�G.

It is evident from Fig. 2, showing the potential energies
and specific heat, that there is a melting temperature in
the 10 000 ion system similar to that in infinite Coulombic
matter, though it is somewhat smeared out and shifted to a
lower temperature. Three other measures of this transition
are shown in Fig. 3: the ratio of the maximum to the
minimum in the correlation function g�r�, the ratio of the
density in the outer six shells to the density in the valleys
between shells, and the diffusion coefficient

D �
X

i

d2
i ��2NDt� , (3)

where di is the three-dimensional displacement of each ion
in the time interval Dt and N is the number of ions. All of
these show an anomaly at the transition temperature.

The behavior of diffusion is shown in more detail in
Fig. 4, where in the top plot it is evident that diffusion
follows a pattern —presumably particles move easier in
areas where the imperfect lattice on the spherical surface
has defects. In the center panel the relative constancy of the
overall diffusion coefficients with radius is shown. Finally,
on the bottom, the ratio of the tangential component of
diffusion within shells to the radial one between shells is
plotted, showing an anomaly near the melting temperature
in the outer region that is not present in the interior. This
is in qualitative agreement with the observation of [8],
where in a simulation of magnetic confinement of a smaller
(256-ion) system, no radial diffusion was seen.
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FIG. 3. Three properties of the ion clouds are shown that de-
pend on temperature. The top figure is the ratio of densities in
the shells to those in the gaps between shells, as a function of
temperature for the outer five shells. In the middle, the ratio
of the first peak to the following minimum in g�r� (the two-
dimensional correlation function of the type that was shown in
Fig. 1) is plotted as a function of temperature. Finally, the bot-
tom plot is that of the (three-dimensional) diffusion coefficient
in the ion clouds as a function of temperature. The dashed line,
in each box, corresponds to the temperature where the specific
heat shows a maximum for 10 000 ions.

The simulations reported so far were for plasmas con-
fined by a constant force. In rf quadrupole confinement
(Paul traps and accelerator storage rings) particles are con-
fined in an alternating rf focusing field whose frequency is
fast compared to the plasma frequency. The effective tem-
perature in such systems, defined as the motion of particles
in complete rf cycles, and the coupling of energy from the
rf motion into random temperaturelike motion can be very
small at low temperatures [12]. A simulation was tried for
1000 ions confined in an rf field, as in [12], and the spe-
cific heat peaked at the same value as that for a steadily
confined one.

Finally, the question was addressed whether the lower-
ing of the melting temperature was the consequence of the
different form of ordering, or of the finite size. Figure 5
shows results that include calculations for 10 000-, 1000-,
and 100-ion systems, as well as for Coulombic matter. The
anomaly in specific heat is progressively weaker with a de-
creasing number of ions, but the peak is clearly shifting to
205003-3
FIG. 4. The upper figure displays the outer shell of ions as
dots, at a temperature near melting (G � 220), with the lines
representing the distance each ion traveled in the time interval
of [1�vpl]. The middle box displays the (three-dimensional) dif-
fusion coefficient D in units of [a2

WS 3 vplasma] as a function of
radius. The lowest box shows the ratio of the (one-dimensional)
component of the diffusion coefficient along the spherical shells
to the radial component perpendicular to it, with the solid
dots representing the outer 50% of the array, and the stars the
inner part.

lower temperatures. The fact that the data show a smooth
size dependence indicates that this lowering is probably a
size effect —the energy differences between bcc and shell
structures [11] are 3–4 orders of magnitude smaller than
the latent heat. Since the ions on the outer surface have
no neighbors on one side, the lowering of the melting tem-
perature is plotted against the fraction of ions residing on
the outermost surface. The lowering of temperature ap-
pears to be linear with this fraction—starting from the in-
finite medium. (Note that for 60 ions, 48 are in the outer
shell; for 12 ions, all ions are on the outside, as was found
in [13].) Thus, it would appear that the lowered melting
temperature is almost entirely due to the finite size rather
than the different form of ordering. Such a dependence
in the melting temperature has not yet been observed in
measurements but will perhaps be possible with present
205003-3



VOLUME 88, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 2002
1 3 5 7
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Temperature (1/Γ x 1000)

Sp
ec

if
ic

 H
ea

t

10,000 ions
1000 
100 

Infinite Matter

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Fraction of Ions in Surface Layer

T
ra

ns
iti

on
 T

em
pe

ra
tu

re
 (

1/
Γ 

x 
10

00
)

Infinite Matter

10,000 Ions,  Γ=209

1000 Ions,  Γ~278

100 Ions,  Γ~500

FIG. 5. Specific heat plots of the type that was shown in
Fig. 2 for 10 000, 1000, and 100 ions. The peak is weaker
for the smaller clouds and shifted to lower temperatures. The
lower plot shows the temperature at which the specific heat has
its maximum value, plotted against the fraction of ions in the
cloud that is in the outermost shell; the error bars indicate the
uncertainty with which the position of the peaks can be de-
duced. This dependence seems to obey the linear relationship
Tmelting � 1�G0 3 �1 2 0.98 3 F� (where G0 is the melting
point of infinite Coulombic matter, and F is the fraction of ions
in the outer layer) shown as the line.

techniques. A lowering of the melting temperature in fi-
nite atomic clusters (where the interaction is short range
205003-4
and the functional dependence does not appear to be so
simple) has been known for some time [14]. The present
system, with the ordering arising only from Coulomb inter-
actions, may give rise to the particularly simple behavior
found here.

In conclusion, the melting of confined, finite plasmas is
different from that of infinite Coulombic matter, apparently
due to the inevitable fact that these clusters have a surface.
The decrease in melting temperature appears to be propor-
tional to the relative size of the surface layer and becomes
less sharply defined for smaller systems. The diffusion
rates in the outer regions are substantially larger parallel to
the surface than perpendicular to it, in the vicinity of the
melting temperature.
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