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A continuum model for the phase separation and coarsening in electrostatically driven granular media
is formulated in terms of a Ginzburg-Landau equation subject to conservation of the total number of
grains. In the regime of well-developed clusters, the continuum model is used to derive “sharp-interface”
equations that govern the dynamics of the interphase boundary. The model captures the essential physics
of this system.
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Despite extensive work in the last two decades, the
physics of granular flow is still poorly understood, es-
pecially in the limit of strongly inelastic granular colli-
sions when no first-principles hydrodynamic description is
available [1,2]. Additional complications include contact
interactions which become dominant when the grain size
goes below 0.1 mm. As particles may acquire an electric
charge, a new type of dynamics appears which is governed
by the interplay between long-range electromagnetic and
short-range contact forces.

Recently, off-equilibrium phase separation and coarsen-
ing in electrostatically driven granular submonolayers was
observed [3,4]. The inset of Fig. 1 shows a schematic of
experimental setting. Conducting particles are placed be-
tween the plates of a plane capacitor. When particles are
in contact with the capacitor plate, they acquire an elec-
tric charge. If the electric field E exceeds a critical value,
the resulting (upward) electric force overcomes the grav-
ity force mg and pushes the particles upward. When a
particle hits the upper plate, it gets the opposite charge
and falls back. Changing the frequency of the alternating
field, one can control the particle elevation and avoid the
collisions with the upper plate.

It was found [3] that the particles remain immobile on
the bottom plate at E , E1 (the precipitate state). If the
field E is larger than a second threshold value, E2 . E1,
the system is in a gaslike state. This second field E2
is 50% 70% larger than E1. Upon decreasing E below
E2 (in the interval E1 , E , E2) there is nucleation of
precipitate, and small densely packed clusters form and
start to grow. The clusters then exhibit coarsening of the
Ostwald-ripening type: smaller clusters shrink, larger clus-
ters grow. Remarkably, this coarsening process exhibits
dynamic scaling typical for interface-controlled systems
[5]. Molecular dynamics simulations showed qualitative
agreement with experimental results [3].

In this Letter we develop a continuum description of
this fascinating system. Our model captures the essential
phenomenology, reproducing different morphologies of
coarsening and the correct dynamic scaling. It establishes
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important connections with other nonequilibrium physical
systems. It also gives new predictions, both qualitative
and quantitative. We verified some of these predictions in
specially performed experiments (see below properties 1,
2, and 4 and a discussion of the novel “hole” morphology).

Model.—Let the granulate consist of N ¿ 1 identical
spherical particles with mass m and radius s (which is
small compared with the plate spacing h). We will focus
on the evolution of the number densities of the precipitate,
n�r, t� and gas ng�r, t�, where r � �x, y� and x and y are
the horizontal coordinates. For concreteness, we will con-
sider a low-frequency electric field (so that the gas density
is almost independent of the vertical coordinate) and mea-
sure ng in cm22. It was found in Ref. [3] that the phase
segregation in this system is caused by electrostatic screen-
ing: a decrease in the vertical electric force F, exerted on
a grain in contact with the bottom plate, caused by the
presence of other grains. Correspondingly, the F�n� de-
pendence will become an important element of our model.
This dependence can be easily found in the dilute limit

FIG. 1. The density of the gas phase ng (normalized to nc) vs
time as predicted by the numerical simulations with Eqs. (4)–
(6). Inset: schematic of the experimental setting [3].
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ns2 ø 1. Consider two grains lying on the bottom plate
the distance L ¿ s apart. The second grain and its mirror
image in the plane form a dipole with the dipole moment
of order of s3E. This dipole produces an electric field at
the location of the first grain: dE � 2�s�L�3E. There-
fore, the net force acting on the first grain is reduced and
becomes F0�1 2 k�s�L�3�. If there are many grains lying
far apart, we can simply sum up these vertical forces and
obtain the net force

F�n� � F0�1 2 k1s3n3�2� . (1)

Here F0 � �1.36 . . .�s2E2 is the vertical force exerted on
a single grain in contact with the bottom plate [3], and k,
k1 � O �1� are numerical factors.

Although no analytic expression for F�n� is available
for intermediate and large n, it is clear that F�n� should
decrease with n [3]. A decreasing F�n� dependence leads,
at intermediate values of E, to a segregation instability
and bistability. Indeed, the density value n � n� such
that F�n�� � mg is in an unstable equilibrium. For n ,

n�, F�n� exceeds mg so the particles “evaporate” until
the “empty state” n � 0 is reached. If n . n�, F�n� ,

mg and the particles remain immobile. However, as gas
particles hit these regions and get attached to them, n
grows until the densely packed state n � nc � s22 is
reached. This simple argument ignores conservation of the
total number of particles and cluster edge effects that we
account for in the following.

Two additional crucial elements of our model come from
the fact that the vertical force exerted on a particle de-
creases with an increase of the number of neighboring
particles [3]. The force exerted on a particle located at
the cluster edge, Fe, is larger than the force on a particle
in the bulk of the cluster Fb , but smaller than the force on
a single particle F0. In addition, in a coarse-grained de-
scription (valid for clusters with many particles) Fe should
depend on the local curvature of the cluster edge. A clear
signature of these cluster edge effects appears already in
the dilute limit where quantitative relations can be ob-
tained. First, for an inhomogeneous density distribution,
the density n�r� in Eq. (1) should be replaced by a locally
averaged density n�r�, the averaging being performed over
a region which size is of the order of the interparticle dis-
tance. For a weakly inhomogeneous coverage, one can
expand n�r� around a point r0 up to �r 2 r0�2. Then, aver-
aging the result over a circle of radius �n�r0�21�2, we ob-
tain n�r� � n�r� 1 O �=2n�n�. Substituting it in Eq. (1),
we arrive at

F�n, =2n� � F0�1 2 k1s3n3�2 2 k2s3n21�2=2n� , (2)

where k2 � O �1� is another numerical factor. The cluster
edge effects are described by the =2 term.

The precipitate number density n�r, t� serves as the or-
der parameter of our continuous model, the two phases
corresponding to n � 0 and n � nc [6]. In its turn,
the gas density ng�t� plays the role of the “mean field.”
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(We assume that the density relaxation in the gas phase
is fast compared to the cluster-gas exchange dynamics.
Therefore, ng is approximately constant in space and de-
pends only on time.) To derive the governing equation
for n, we first consider a uniform precipitate in the di-
lute limit: n 1 ng ø nc. The precipitate will evaporate
if F0 . mg. On the contrary, the gas will precipitate if
F0 , mg. The typical time scales of each of these two pro-
cesses are of order of t � min��g�h�1�2, v21�. A simple
dynamic equation

dn

dt
�

G

t
�Cngu�G� 1 nu�2G�� , (3)

subject to conservation law n 1 ng � N�L2 � const, ac-
counts for these facts. Here G � 1 2 F0�mg and u�· · ·�
is a step function. The numerical factor C � O �1� ac-
counts for a possible difference between the time scales of
“evaporation” and precipitation. The factor G in front of
the brackets of Eq. (3) takes care, in the simplest possible
way, of the continuity of transition between the regimes of
F0 . mg and F0 , mg.

Going to higher precipitate densities, we account for
three basic effects: (a) Because of the screening, the lift-
ing force decreases with n�nc. For simplicity, we as-
sume a linear dependence F0�1 2 bn�nc�, for all densities
0 # n�nc # 1. Here b is a numerical constant [using the
estimate of F�n � nc� from Ref. [3], we have b � 8�9].
(b) We introduce an additional factor �nc 2 n��nc in the
first term in the right-hand side of Eq. (3). It accounts,
in a simple way, for a slowdown of precipitation from the
gas phase: at finite n�nc a part of the bottom plate is al-
ready occupied by grains. (c) We account for the inhomo-
geneity of the precipitate by adopting a simplified version
of the =2n term from Eq. (2), with a diffusion coefficient
D � s2�t. Thus we arrive at a scalar Ginzburg-Landau
equation (GLE). We will use this equation in the phase
coexistence regime mg , F0 , mg��1 2 b�. (A more
restrictive condition for the phase coexistence will be ob-
tained below.) GLE can be written in a scaled form:

≠n

≠t
� f�n, ng, n�� 1 =2n , (4)

where

f � �n 2 n�� 3

Ω
n, if 0 # n # n� ,
Cng�1 2 n�, if n� # n # 1 . (5)

Here n� � �1�b� �1 2 mg�F0�. The coordinates (and the
system size L, see below) are scaled by d � �Dt�l�1�2�
nc, the time is scaled by tmg�bF0. The precipitate and
gas densities (and n�) are scaled by nc. Finally, l �
bF0�mgn2

c.
The dynamics are constrained by the conservation of the

total number of particles. In the scaled units

L22
Z L

0

Z L

0
n�x, y, t� dx dy 1 ng�t� � ´ , (6)

where ´ is the (constant) area fraction of the granulate.
204301-2



VOLUME 88, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 2002
At fixed ng and 0 , n� , 1, the function f�n, ng, n��
describes bistability: it has two stable zeros, at n � 0 and
n � 1, and an unstable zero at n � n�. Equations (4)–(6)
serve as the continuum version of our model. Remarkably,
similar equations (with different forms of function f and
conservation laws) have appeared in other contexts [7–10].
The dynamics of a globally conserved bistable system in-
volve three characteristic time scales. Phase separation
occurs on the fastest time scale t0, determined by the prop-
erties of the function f; it is independent of the charac-
teristic cluster size l. On a longer time scale t1 ~ l, the
time-dependent gas density ng�t� becomes close to special
“equilibrium” value neq

g which satisfies the Maxwell ruleR1
0 f�n, ng, n�� dn � 0. A direct calculation yields

neq
g �

n3
�

C�1 2 n��3 . (7)

When ng � neq
g , a planar interface of the precipitate is

in a dynamic equilibrium: it neither advances nor retreats
if fluctuations are neglected. Curved interfaces define an
additional, slower coarsening stage governed by the cluster
edge curvature. Its characteristic time t2 ~ l2 [9].

Sharp-interface equations.—These become valid to-
wards the end of the t1 stage, when the precipitate in the
clusters is already densely packed (n � 1), and the gas
density ng is close to neq

g . The conservation law (6) reads

A�t� � L2�´ 2 ng�t�� , (8)

where A�t� is the total area of the precipitate. Demanding
A . 0 and using Eq. (7), we obtain a condition for the
two-phase coexistence:

´ .
n3

�

C�1 2 n��3 . (9)

Using our model expression for n�, we can write

1 ,
F0

mg
,

"
1 2 b

µ
1 1

1
3
p

C´

∂21
#21

. (10)

The quantity in the right side of Eq. (10) corresponds to
the threshold value E2 of the electric field found in experi-
ment [3]. It is instructive to compare this value with the
“naïve” estimate F0�mg � �1 2 b�21. For example, for
´ � 0.25, C � 1, and b � 8�9 the naïve estimate gives
F0�mg � 9, whereas Eq. (10) gives F0�mg � 1.5. The
latter condition agrees better with experiment [3]. Even
better agreement is achieved if one chooses C � 10.

The normal component of the interface speed is [10]

yn � nC�1 2 n��3n
23�2
� �ng 2 neq

g � 2 K , (11)

where K is the local curvature of the interface and
n � 5�9 1 2

p
3 ��138 � 0.45. Given the initial location

of all interfaces, Eqs. (8) and (11) provide a proper descrip-
tion of the late-time coarsening dynamics. Furthermore,
these equations can be mapped into equations of interface-
controlled transport that appeared in other contexts. This
enables one to readily present a number of important
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results for several coarsening configurations: (1) A
planar (a) or circular (b) interface is stable with respect
to small modulations [9,11]. (2) The radius of a single
cluster which is in a stable dynamic equilibrium with the
gas phase has a nonzero lower bound [9,11]. (3) Multiple
clusters exhibit Ostwald ripening [7–9,11], and their
size distribution exhibits dynamic scaling. The number
of clusters decays with time like t21, while the average
cluster radius grows like t1�2 [5,9,11]. (4) Depending
on the initial parameters, an “inclusion” (empty region)
inside a cluster will either shrink to zero or expand and
come out of the cluster [12].

Properties 1 to 4 are insensitive to the exact form of
the bistable function f. Properties 1(b) and 3 were al-
ready observed in the original experiment [3]. Properties
1(a), 2, and 4 represent new predictions. We verified all of
them by performing special experiments. In contrast to our
previous studies [3], bigger cell (11 3 11 cm) and larger
particles (165 mm Cu balls) were used. The typical num-
ber of particles in the cell was 200 000. The area fraction
of granulate was also larger than in experiments [3].

Note that when F only slightly exceeds mg, the inter-
face width (which, at n� ø 1, is proportional to n

23�2
� )

becomes comparable to the cluster size and/or intercluster
distance. In this regime the sharp-interface theory is in-
valid. Still, the continuum theory should work.

Simulations.—We solved Eqs. (4)–(6) numerically
with periodic boundary conditions. Selected results are
shown in Figs. 1 and 2. The upper row of Fig. 2 shows a
typical evolution of the precipitated phase, as observed in
the simulations. At t � 0 most of the particles are in the
low-density precipitate (that is, in the unstable region).
This corresponds to an up-quench of the electric field
from E , E1 to the coexistence region E1 , E , E2.
At small times one observes growing “holes” in the
precipitate. At this early stage conservation of the number
of particles is unimportant yet. At later times multiple
clusters form and exhibit Ostwald ripening as expected.
The lower row of Fig. 2 shows snapshots from experiment.
Excellent agreement in morphology is observed, including
the appearance of holes predicted by our model. Figure 1
shows the simulated time history of the gas density ng.
One can see that, at late times, ng approaches the value
corresponding to the coexistence of a single cluster and
gas phase [9,11]. For the set of parameters chosen for
this simulation, the Maxwell-rule value neq

g � 0.05. The
fine structure of the ng�t� dependence (small peaks)
corresponds to the disappearance of clusters [11,12]. In
experiment, the current through the cell is carried by
the grains belonging to the gas phase, so it should be
proportional to ng. Therefore, the mean field ng�t� should
be a directly observable quantity, so our model gives a
definite prediction of its dynamics.

Our model assumes a low-frequency electric field. In
this case the gas particles typically perform an appreciable
bounce motion, and a separate, mean-field treatment of the
204301-3
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FIG. 2. Phase segregation and coarsening dynamics. The
simulation images (a)–(c) are taken at t � 100 (a), 300 (b),
and 4000 (c) scaled time units. White corresponds to densely
packed clusters (n � nc), black to empty regions. The system
dimensions (in the units of d) are 500 3 500. The electric
field E corresponds to n� � 0.2. The experimental pictures
(d)–(f) were obtained for dc electric field E � 7 kV�cm.
Starting from the gas (E . E2) and making a down-quench to
E , E1, we first prepared a nearly uniform layer of precipitate.
Then the system was up-quenched into the coexistence region
E1 , E , E2. Images correspond to times t � 1 sec (d),
t � 30 sec (e), and t � 200 sec (f) after the up-quench.

gas phase is legitimate. For high frequencies, the particle
motion becomes restricted to the bottom plate. Therefore,
one can expect that, at the high frequencies, the 1�2 growth
exponent (observed in experiment [3] and explained by our
model) will cross over to the 1�3 exponent, typical for
locally conserved systems [13].

It is interesting to compare the phase separation prop-
erties of electrostatically driven granulates with those vi-
brated in the vertical direction mechanically [14]. Though
these two types of systems strongly differ in details of
particle interactions and motion, they have very similar
phase diagrams and are strikingly similar in their phase
transition morphologies. This indicates that a bistable
Ginzburg-Landau equation subject to conservation of the
number of particles can be relevant for the mechanically
vibrated systems as well.

We have formulated a scalar Ginzburg-Landau theory
of the off-equilibrium phase separation in electrostatically
driven conducting monodisperse particles. The theory
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captures the essential physics of this system. Several
new predictions of our model have been verified in spe-
cially performed experiments. A better quantitative un-
derstanding of this system requires additional quantitative
experiments in different regimes of phase ordering. A
comparison of the model with the new experiments will
enable one to determine the unknown numerical coeffi-
cients of the model. These coefficients control the precise
phase diagram, the interface velocity, the amplitudes of the
dynamic scaling laws in the Ostwald ripening regime, etc.
However, already at this stage we see a strong evidence in
favor of quantitative relevance of the globally constrained
GLE to this system.
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