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We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-
time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed
in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion
relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of
the parameters of pion propagation. We predict that, when the critical temperature is approached from
below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is
attributed to the decrease of the pion velocity near the phase transition.
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Introduction.—Designed for the primary goal of dis-
covering quark-gluon plasma, experiments with collisions
of large nuclei, such as those pursued at the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven National Labo-
ratory, also open up possibilities to study strongly interact-
ing matter at extremely high temperatures and densities.
In particular, it is hoped that at least some part of the rich
phase diagram of QCD can be explored experimentally.
On the theoretical side, some problems, such as finding
the equation of state of QCD, can be effectively solved by
using numerical Monte Carlo techniques. However, many
important issues related to real-time behavior and response
of high-temperature strongly interacting matter cannot be
systematically studied by such methods. This is because
lattice techniques rely on the formulation of quantum field
theory in imaginary time. As a result, the question of what
happens to the hadron spectrum of QCD, which is impor-
tant, for example, for the understanding of certain features
of the dilepton spectrum observed in heavy-ion collisions,
cannot be easily answered in a reliable fashion.

Fortunately, many quantities characterizing the real-time
behavior of finite-temperature systems can be related, by
exact identities, to static (thermodynamic) functions. The
most familiar case is the relation between the velocity of
sound u, the pressure p, and the energy density e: u �
�≠p�≠e�1�2. A less trivial example is that of spin waves
in antiferromagnets: it has long been known [1] that at
any temperature below the phase transition, at long enough
wavelengths there exist low-frequency spin waves which
have a linear dispersion curve, whose slope is given exactly
in terms of static quantities.

In this Letter, we point out that, in thermal QCD, the
dispersion relation of soft pions can be determined entirely
using static quantities. Such quantities, in principle, can be
measured on the lattice. Using this observation, we show
that the pion pole mass, which characterizes the propa-
gation of the collective pion modes, decreases as one ap-
proaches the critical temperature, despite the well-known
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fact that the pion screening mass increases in the same
limit.

Pion dispersion from static quantities.—From the point
of view of symmetry properties, QCD at temperatures T
below or just above the temperature of the chiral phase
transition Tc is similar to a Heisenberg antiferromagnet
[2,3]. With two light quarks (u and d), QCD possesses an
approximate chiral SU�2�V 3 SU�2�A � O�4� symmetry,
which is broken spontaneously to SU�2�V � O�3� by the
chiral condensate. This is similar to the O�3� ! O�2� sym-
metry breaking in antiferromagnets. Moreover, the order
parameter of QCD, the chiral condensate �c̄c�, is distinct
from the conserved charges (the vector and axial isospin
charges), which makes the real-time behavior of QCD
similar to that of antiferromagnets (but not of
ferromagnets).

By analogy with spin waves in antiferromagnets [1], one
can show that, at any T below Tc, the real part of the
dispersion relation of soft pions is given by

v2 � u2�p2 1 m2� , (1)

provided the quark masses are small enough. We use the
following terminology: u is the pion velocity (although it
is the velocity only when m � 0), m is the pion screening
mass, and the energy of a pion at p � 0, mp � um, is
the pion pole mass. At zero temperature, u � 1, and the
pole mass coincides with the screening mass. At nonzero
temperature, there is no Lorentz invariance, and u gener-
ally differs from 1 [4,5]. Such pion modes with modified
dispersion relation are termed “quasipions” in Ref. [4].

We show that the parameters u and m can be determined
by measuring only static (zero-frequency) Euclidean cor-
relators. In particular, m can be extracted from the long-
distance behavior of the correlation function of the
operator pa � ic̄g5tac,

Z
dt dV e2iq?x �pa�x�pb�0��

�c̄c�2 �
1
f2

dab

q2 1 m2 , (2)
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where x � �t, x�, c is the quark field, a, b � 1, 2, 3, ta

are isospin Pauli matrices, Trtatb � 2dab, and �· · ·� de-
notes thermal averaging. The integration over the Eu-
clidean time variable t is taken in the interval �0, 1�T�.
In Eq. (2) �c̄c� is the chiral condensate at zero quark
masses. Equation (2) also provides the definition of the
temperature-dependent pion decay constant f.

The pion velocity u is equal to the ratio of the above
defined pion decay constant f and the axial isospin suscep-
tibility xI5:

u2 �
f2

xI5
. (3)

This is a close analog of the equation c2 � rs�xm [1]
for the velocity of spin waves in antiferromagnets. The
axial isospin susceptibility xI5 can be defined as the second
derivative of the pressure with respect to the axial isospin
chemical potential [see Eq. (5) below], or, equivalently, via
the static correlator of the axial isospin charge densities,

dabxI5 �
Z

dt dV �Aa
0 �x�Ab

0 �0�� ,

Aa
0 � c̄g0g5 ta

2
c . (4)

The right-hand side of Eq. (4) is free of short-distance
divergences in the limit of zero quark masses, when Aa

0
are densities of conserved charges.

The derivation of Eqs. (1)–(4) at nonzero temperature
requires an analysis of the hydrodynamic theory similar to
the one performed in Ref. [1]. This approach will be pre-
sented elsewhere [6]. In this Letter, we use an intuitively
simpler (but less rigorous) derivation based on the effec-
tive Lagrangian approach. This approach does not allow a
correct treatment of dissipative effects, but it will be suf-
ficient for our purpose. A somewhat similar approach has
been used, for low temperatures, in Ref. [5].

Derivation.—Our strategy is to first write down the
most general form of the effective Lagrangian of pions and
then relate its free parameters to the correlation functions
of QCD by matching the partition function Z � eP V�T

and its derivatives in the effective and microscopic theo-
ries. The quark part of the QCD Lagrangian at finite axial
isospin chemical potential mI5 is given by

Lquark � ic̄gmDmc 2 �c̄LMcR 1 H.c.� 1 mI5A3
0 ,

(5)

where M � diag�mu,md� is the quark mass matrix. The
chemical potential mI5 is coupled to the axial isospin
charge A3

0 defined in Eq. (4). For simplicity, we set
mu � md � mq.

We assume that, in the infrared, the pion thermal width
is negligible compared to its energy. This has been seen in
explicit calculations at low T [7]. The dynamics of the pi-
ons is described, in this case, by some effective Lagrangian
Leff, which we assume to be local, allowing expansion in
powers of momenta. This is equivalent to the assumption
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that the correlation functions have only pole singularities,
as in hydrodynamics. To lowest order, the Lagrangian is
fixed by symmetries up to three coefficients, ft , fs, and
fm,

Leff �
f2

t

4
Tr=0S=0Sy 2

f2
s

4
Tr≠iS≠iS

y

1
f2

m

2
Re TrMS , (6)

where S is an SU(2) matrix whose phases describe the
pions. Because of the lack of Lorentz invariance, f2

t and
f2

s are independent parameters.
The chemical potential mI5 enters lowest-order effective

Lagrangian (6) via the covariant derivative =0 in a way
completely fixed by symmetries. This can be seen by
promoting the SU�2�A symmetry in (5) to a local symmetry
and treating mI5 as the time component of the SU�2�A

vector potential [8]. The covariant derivative =0 is forced
to have the form

=0S � ≠0S 2
i
2

mI5�t3S 1 St3� . (7)

The structure of the Lagrangian (6) is analogous to that
of the effective Lagrangian at finite (vector) isospin chemi-
cal potential mI [9]. A significant difference between the
two cases is that the QCD vacuum breaks the SU�2�A (axial
isospin) symmetry spontaneously. It is important to note,
however, that the SU�2�A is a symmetry of the Lagrangian
(at mq � 0), as good as the SU�2�V . The conservation of
the axial isospin current Aa

m in the chiral limit makes the
consideration of finite mI5 entirely legitimate.

The pion dispersion relation following from Eq. (6) is
given by Eq. (1) with

u2 �
f2

s

f2
t

and m2 �
mqf2

m

f2
s

. (8)

Matching the second derivative of the pressure P with
respect to mI5 in QCD and in the effective theory, we find
the relation between ft and xI5:

xI5 �
≠2P

≠m
2
I5

� f2
t . (9)

Together with the first of Eqs. (8) and f � fs (see below),
this implies Eq. (3). The first derivative with respect to mq

gives

2�c̄c� �
≠P

≠mq
� f2

m . (10)

Combining with the second of Eqs. (8), we derive the gen-
eralization of the famous Gell-Mann-Oakes-Renner (GOR)
relation to finite temperature:

f2
s m2 � 2mq�c̄c� . (11)

Finally, we need to show that f � fs. We achieve this
by treating M as an external field, which we parametrize
as M�x� � mqeiaa�x�ta

. Matching derivatives of lnZ , we
find
202302-2
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�pa�x�pb �0�� �
d2 lnZ

m2
qdaa�x�dab�0�

� f4
m�fa�x�fb�0�� ;

pa � ic̄g5tac, fa�x� � Re TritaS�x��2 .

(12)

Note that pa is defined in the microscopic theory (QCD),
while fa is a field of the effective theory.

The correlation function of fa�x� can be calculated by
expanding the effective Lagrangian in (6) to second order
in fa. We expect the result to match the correlator of
pa only for small momenta, which means that we have
to limit ourselves to zero Matsubara frequency and small
spatial momenta, e.g., smaller than the screening mass ms

of the order parameter s � c̄c. For the static correlator
of pa, by integrating (12) over t and using (10),

Z
dt

�pa�x�pb�0��
�c̄c�2 �

Z
dt �fa�x�fb�0��

�
1
f2

s

Z d3q
�2p�3

eiq?xdab

q2 1 m2

�
1
f2

s

e2mjxj

4pjxj
dab. (13)

We see that, by measuring the large-distance �jxj ¿ m21
s �

static correlation function of the operator pa � ic̄g5tac,
we can extract two parameters of the effective Lagrangian
(6): the screening mass m, and fs which coincides with
the decay constant f defined by (2). The third parameter,
f2

t , coincides with the susceptibility xI5, which can also
be expressed in terms of the static correlation function
in Eq. (4). From Eq. (3), we completely determine the
dispersion relation of soft pions.

Critical behavior.— For the above results to be valid, pi-
ons must be the lightest modes. In particular, this requires
m ø ms. If mq is very small, this condition is satisfied
everywhere below Tc, except for a region very close to
Tc. As T ! Tc from below and ms ! 0, one can ask the
question: What is the critical behavior of the parameters
u and m when T remains sufficiently far from Tc so that
the hierarchy m ø ms ø T is maintained?

Since u and m can be related to static correlation func-
tions, one should expect their critical behavior to be gov-
erned by the same static critical exponents known from
the theory of critical phenomena. We begin by consid-
ering the critical scaling of the decay constant f � fs.
It is defined via the behavior of a static correlator (13)
at distances larger than m21

s . In the range of momenta
m ø jqj ø ms we have [see Eq. (2)]

Z
dt dV e2iq?x�pa�x�pb�0�� � dab �c̄c�2

f2

1
q2 . (14)

On the other hand, at distances short compared to the corre-
lation length, i.e., for momenta such that ms ø jqj ø T ,
the correlator of the order parameter c̄c has the following
scaling behavior:
202302-3
Z
dt dV e2iq?x�c̄c�x�c̄c�0�� �

1
jqj22h

. (15)

We also know that in this regime the correlators of s �
c̄c and pa � ic̄g5tac are degenerate, since they are
related by the SU�2�A symmetry, which is restored at Tc.
Thus the correlator (15) must match with the correlator
(14) at the scale jqj � ms. This requires

f2 � A m2h
s �c̄c�2. (16)

The coefficient A cannot be found from scaling arguments
but is finite and regular at Tc. The exponent h in the
universality class of the O(4) sigma model in d � 3 di-
mensions (to which two-flavor QCD at Tc belongs [2]) is
known: h 	 0.03 (see, e.g., [3,10]).

At T ! Tc the scaling laws for the inverse correlation
length ms and the order parameter �c̄c� are also known
from universality,

ms � tn , (17)

�c̄c� � tb , (18)

where t � �Tc 2 T��Tc. Thus we find

f2 � t2b2nh � t�d22�n , (19)

where in the last equation the relation

2b � n�d 2 2 1 h� (20)

is used (recall that all scaling exponents can be expressed
in terms of two independent ones, e.g., h and n). From this
point on, we set d � 3, so f � tn�2. This is the same as
the Josephson scaling for the superfluid density in helium
[11]. Contrary to a naive expectation, f scales differently
from the order parameter �c̄c� � tb . The difference is
numerically small, due to the smallness of h. In the O(4)
universality class in d � 3, n 	 0.73 and b 	 0.38 [10].

Next, we point out that xI5 is finite at T � Tc, where
it is degenerate with the vector isospin susceptibility. The
singular behavior of xI5 is dominated by the mixing of
Aa

0 with operators linear or quadratic in s or pa in the
dimensionally reduced theory describing infrared modes
jqj ø T . Such a mixing, however, is forbidden by the
O(4) chiral symmetry, as well as by charge conjugation.
This is consistent with the lattice result that the vector
isospin susceptibility is finite at Tc [12]. Since f2

t � xI5,
finiteness of xI5 invalidates a common assumption that
ft ! 0 at Tc. Note that above Tc there are no propagating
soft pion modes, so the parameters of the effective La-
grangian (such as ft), and hence Eq. (9), lose their mean-
ing, even as xI5 remains well defined and finite. This is
not surprising if one recalls that, as T ! Tc from below,
the domain of validity of the Lagrangian (6) �jqj ø ms�
shrinks away and disappears at Tc.

Now we are ready to find the scaling of u. Using Eq. (3),
the scaling of f in Eq. (19), and the fact that xI5 is finite
at Tc, we find
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u2 � f2 � tn . (21)

This means that the velocity of pions vanishes at Tc.
The scaling of the screening mass m can be found from

the GOR relation (11) (recall that mq is assumed to be
small):

m2 � 2
mq�c̄c�

f2 � mqtb2n. (22)

In the O(4) universality class b , n, which implies that
the static screening pion mass grows (at fixed mq fi 0) as
T ! Tc. This fact is already known from lattice simula-
tions of QCD.

The pole mass of the pion, mp , scales differently:

m2
p � u2m2 � 2

mq�c̄c�
xI5

� mqtb . (23)

This means the pole mass of the pion drops as T ! Tc.
For the formulas (21)–(23) to be valid it is necessary

that t ø 1. However, for any mq fi 0, these formulas
break down when t is so small that the condition m ø

ms is violated. Using Eqs. (17) and (22), we see that
this happens when t � m

1�bd
q or smaller. In the regime

t ø m
1�bd
q the “distance” from the critical point �T �

Tc, mq � 0� is controlled by mq, but not t. The mq scaling
of all quantities can be obtained starting from

�c̄c� � m1�d
q at t � 0 . (24)

Comparing this to Eq. (18), we see that t and m
1�bd
q have

the same scaling dimension. Using the scaling hypothesis
we can easily obtain the mq scaling by replacing t with

m
1�bd
q . For example,

m2 � m12�n2b��bd
q , m2

p � m111�d
q . (25)

(mp now has the meaning of the typical frequency of the
pion mode with zero momentum. This mode may be over-
damped in this regime.) Both masses vanish as mq ! 0 at
T � Tc; however, for the screening mass m2 ¿ mq, while
for the pole mass m2

p ø mq. In particular, near the phase
transition mp ø m.

The decrease of the pion pole mass may have inter-
esting consequences for heavy-ion collisions. It is the
pole mass of a hadron, rather than its static screening
mass, that affects the observed spectrum. Within statis-
tical models for hadron production, the drop in the pion
pole mass would lead to an overpopulation of pions at
low momenta, provided the chemical freezeout tempera-
ture Tch, at which the hadron abundances are fixed, is
close to Tc. For a crude estimate of this effect we use
LQCD � 200 MeV as the typical QCD scale in Eq. (25),
and Tch � 170 MeV as an estimate for the freeze-out tem-
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perature [13], which is indeed very close to Tc. The shift
of the pole mass near Tc is approximately Dm � mp 2

mp 	 mp
�mq�LQCD�1�2d 2 1� 	 20.3mp , where d 	
5, and the pion multiplicity at small momenta is enhanced
by roughly exp�2Dm�Tch� 	 1.3. This is a noticeable
effect, although it is smaller than the known contribution
to pion overpopulation due to the feeddown from the de-
cays of resonances [13]. This enhancement is comparable
to the effect of the pion chemical potential mp � 50 MeV
induced by pion kinetics after the chemical freeze-out [14].

Another potential consequence of the fact that pion ve-
locity decreases at Tc is the possibility of Cherenkov ra-
diation of pions by a hard probe moving through the hot
medium created in a heavy-ion collision.
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