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The nature and the universal properties of DNA thermal denaturation are investigated by Monte Carlo
simulations. For suitable lattice models we determine the exponent c describing the decay of the proba-
bility distribution of denaturated loops of length l, P � l2c. If excluded volume effects are fully taken
into account, c � 2.10�4� is consistent with a first order transition. The stiffness of the double stranded
chain has the effect of sharpening the transition, if it is continuous, but not of changing its order and
the value of the exponent c, which is also robust with respect to inclusion of specific base-pair sequence
heterogeneities.
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The melting of a DNA molecule from a double stranded
phase to a denaturated state where the two strands are un-
bound has been the subject of various studies in the past
[1–8]. Experiments done with UV absorption by diluted
DNA solutions show that denaturation occurs through a
series of jumps in the absorbance spectrum as a function
of temperature [9]. The jumps are interpreted as sudden
denaturations of large double stranded portions of the in-
homogeneous chain and suggest a first order character for
the transition. The existing models, even if believed to cap-
ture the relevant features of the system, introduce drastic
simplifications of the complex structure of the DNA mole-
cule in favor of analytical tractability. Within these models,
two different mechanisms responsible for a first order tran-
sition were recently proposed. For the Peyrard-Bishop
(PB) model [3], it has been argued that the stronger stiff-
ness of double stranded compared to single stranded DNA,
may lead to a first order denaturation [5]. It has also been
proposed that this stiffness difference, in combination with
base sequence heterogeneity, should be responsible for the
observed jumps in absorption [4]. Other studies using the
Poland-Sheraga (PS) [1] model led to the claim that ex-
cluded volume effects, even in the absence of stiffness,
induce first order melting [7].

In this Letter, we investigate further these issues within
models representing as realistically as possible the relevant
properties of DNA. Within such models all mechanisms
mentioned above can operate and thus be tested simultane-
ously without resorting to uncontrollable approximations.
Near the transition DNA can be regarded as an alternating
sequence of double helix segments along which base pairs
are bound, and of denaturated loops, where the two strands
are detached. By a scaling analysis of the cumulative
probability distribution function of denaturated loop
lengths we show clearly that excluded volume effects
drive the transition first order, in the limit of infinitely
long chains. We also find that double helix stiffness alone
does not modify such an asymptotic result in a range of
values chosen consistently with those expected for real
DNA. However, in the presence of strong stiffness, and
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for a model with second order denaturation in the infinite
chain limit, the critical region becomes very narrow and,
due to a slow crossover, thermodynamic quantities such as
the specific heat may behave consistently with first order
even for long finite chains.

We model the DNA strands by two self-avoiding walks
(SAW) of length N on cubic lattice, identified by the
vectors �r1�i� and �r2�i� (0 # i # N), joined at a common
origin [�r1�0� � �r2�0�] and with free end points. A gain of
energy ´ (� 1 here) is associated to a bond between
the two strands, which occurs in the model when two
monomers with the same i overlap [�r1�i� � �r2�i�]. The
binding energy is taken to be the same all along the chain,
i.e., to start with, we neglect the heterogeneity of base
pair interactions of specific sequences. At sufficiently low
T the most probable configurations are fully bound, i.e.,
�r1�i� � �r2�i� for all i. Upon increasing the temperature the
two strands are expected to unbind at some T � Tc. The
transition is driven by the formation of denaturated loops,
whose length can be measured by the number of unbound
monomers l of the corresponding strand segments.

In order to investigate in detail excluded volume and
stiffness effects we consider two different models, which
we refer to as models I and II. While in both models
bounded segments are self-avoiding and cannot overlap
any other part of the chain, in I the excluded volume con-
dition is partly relaxed (see Fig. 1): the two strands form-
ing a denaturated loop are self-, but not mutually avoiding
and overlap at noncomplementary sites [i.e., �r1� j� � �r2�k�
with j fi k] is allowed. Such overlaps do not contribute to
the energy. The stiffness of the double stranded chain is in-
corporated in a second parameter ´b , which is the energy
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FIG. 1. Schematic representations of denaturated loops in
models I and II.
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gain if two consecutive segments in the bound chain are
aligned [i.e., when �r1�i� � �r2�i� for i � j 2 1, j, j 1 1,
and �r1� j 1 1� 2 �r1� j� � �r1� j� 2 �r1� j 2 1�]. Of course,
both models neglect the precise helix structure. Model II,
having excluded volume effects fully built in, is a more
realistic representation of DNA. A recent study, in the ab-
sence of stiffness [6], claimed for it some evidence of first
order transition.

For models I and II we sampled by a multiple Markov
chain Monte Carlo (MC) [10] method the loop length
probability distribution function (pdf) at several differ-
ent temperatures. In all cases the pdf has an exponen-
tial decay at low T [P�l, N� � exp�2l�l0�] where bound
segments are instead broadly distributed in length. From
a given Tc upwards one observes instead a scaling form
P�l, N� � l2cf�l�N�, where the exponent c seems to be
approximately independent of T and f is a scaling func-
tion. The length of bound double segments is narrow dis-
tributed in this case. The general picture emerging from
our numerical results has an immediate thermodynamical
interpretation. Quantities usually analyzed at polymer con-
formational transitions are the energy per monomer or the
specific heat, which for a chain of length N and T � Tc

scales as [11]:

C �N , T� � N 2f21h��T 2 Tc�Nf� , (1)

where h is a scaling function and f is the crossover ex-
ponent. For large N one has Cmax�N� � maxTC �N , T� �
N 2f21, from which f can be deduced. The density of
binding contacts along the strands, proportional to the en-
ergy, should scale as Nf21 at T � Tc. Clearly f # 1,
and only f � 1 implies a first order discontinuity of the
density. Given the scaling form of P�l, N � and the fact that
bound segment lengths are finite on average at Tc, the same
density should also scale as the reciprocal of the average
loop length �l� �

P
l lP�l, N �. Now, for 1 # c , 2, �l� �

N 22c, so that f � c 2 1 , 1, and the transition is sec-
ond order. If instead c . 2, �l� and the energy density re-
main finite at Tc for N ! ` and the transition is first order
(f � 1). Analyzing P offers both fundamental and practi-
cal advantages over the use of Eq. (1). Indeed, due to finite
size corrections to scaling, a reliable estimate of f requires
good determinations of C around Tc for sufficiently long
chains [12]. On the contrary, the scaling behavior of P sets
in already for relatively short chains (N 	 100), which al-
low us to estimate c reliably. The robustness of the esti-
mate with respect to the variation of chain lengths assures
that results are little affected by finite size corrections.

We consider first ´b � 0. Figure 2 shows log-log plots
of P as a function of l for N � 50, 100, and 180 for
model I, at T � 0.85 	 Tc [we estimate Tc � 0.85�2�].
After an initial transient the data follow nicely a straight
line in the plots, except when l 	 N , where of course P
drops. It is interesting to note that the power-law regime
sets in already for relatively short loops. A linear fit
of the data for N � 180 gives c � 1.73�4�, indicating
198101-2
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FIG. 2. Plot of P vs l on a log-log scale for model I at T � Tc
and various chain lengths N . Inset: Cmax as a function of N and
relative fit �N2f21 [see Eq. (1)].

a continuous denaturation for model I. By fitting Cmax
as Cmax�N� � AN2f21 (inset of Fig. 2), we obtain f �
0.77�2�. Thus again f , 1 indicates a continuous transi-
tion; moreover, the above proposed relation f � c 2 1 is
well satisfied.

Within a PS model description each loop would be as-
sumed to be totally uncorrelated with the rest of the chain,
which at T $ Tc would just provide a grand-canonical
critical reservoir of strand elements to form the loop. The
value of c within this scheme can be calculated easily. The
critical grand-canonical pdf of a SAW of length l with fixed
end-to-end distance Re, in three dimensions, is [11]

p�l, Re� � lg23n21g�Rel2n� , (2)

where g is a scaling function, g is the entropic, and n is
the metric exponent. A loop in model I is made of two
strands with common end points and allowed to intersect
each other. Thus the probability of a loop of length l (total
perimeter 2l� is

P�l� �
Z

d3Re p2�l, Re� � l2g23n22, (3)

from which follows c�IL� � 2 1 3n 2 2g, where IL
stands for isolated loop. Using the appropriate SAW ex-
ponents, i.e., g 	 1.158, n 	 0.588 [11], we find c�IL� 	
1.448 [13]. This result allows us to quantify the variation
of the exponent c due to excluded volume interactions
between loops and segments which are taken into account
in the MC simulations, namely Dc � c 2 c�IL� 	 0.3.

We now turn to model II. Figure 3 shows the loop
probability distribution at T 	 Tc [Tc � 0.76�2�] for
N � 50, 100, 150, and 200. From a linear fit of the data we
obtain c � 2.10�4� . 2. Excluded volume effects appear
to be responsible for the discontinuous nature of denatura-
tion, in agreement with a recent extension of the PS model
in which the interaction between loops and segments
198101-2
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FIG. 3. Log-log plots of P vs l for model II at T � Tc and
for various N . Inset: Same plots for T � 1.3Tc .

was included in an approximate way [7]. By relying on
field theoretical results for polymeric networks [14], the
authors of Ref. [7] estimated analytically the loop length
pdf exponent to be c 	 2.12, which is remarkably close
to our numerical determination, suggesting that the sort
of perturbative treatment of Ref. [7] catches the essential
contribution to the correlations among different loops and
segments. The inset of Fig. 3 shows a plot of P for
T � 1.0, i.e., well above Tc, and N � 150; the data still
show a power-law behavior with an exponent c � 2.09�5�,
i.e., consistent with the value found at Tc.

Table I summarizes the results obtained for the two
models. In three dimensions the exponent of an isolated
loop is c�IL� 	 1.762 [11]. For both models I and II the
excluded volume interactions are responsible for a roughly
identical increase of c with respect to its “bare,” isolated
loop value c�IL�. For model I this effect is not strong
enough to cause a first order transition.

Next we ask whether a sufficiently strong ´b . 0 may
induce first order denaturation. Recently such a possibility
has been discussed in the context of the PB model [4,5].
This model, like the PS one, takes into account excluded
volume effects very inadequately, since the two strands,
while prevented from overlapping each other, are in fact
not embedded in ordinary three-dimensional space. Only
a sort of longitudinal coordinate along the DNA backbone
and the distance between strands enters the description.
Within this context it was predicted that the stiffness of
bound segments sharpens a continuous transition, making

TABLE I. Summary of exponents found for the two models.

Model c�IL� c�´b � 0� c�´b � 5�

I 1.448 1.73(4) 1.70(6)
II 1.762 2.10(4) 2.06(6)
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it look like first order for practical purposes [4], or even
drives it strictly first order [5].

We focus first on model I, which has a continuous tran-
sition for ´b � 0. Figure 4 shows a plot of lnP vs lnl
for ´b � 5. From a linear fit we obtain c � 1.70�6�, in
agreement with the value determined for ´b � 0. This in-
dicates that a value of stiffness ´b � 5 does not change the
asymptotic character of the transition, which remains sec-
ond order and in the same universality class as for ´b � 0.
The inset of Fig. 4 shows a plot of Cmax as a function of
N . This quantity scales linearly up to N 	 200, and de-
viates from linearity only for the longest lengths investi-
gated. A linear scaling would imply f � 1, i.e., a first
order transition. Apparently there is a very slow crossover
in the specific heat, i.e., the deviation from Cmax�N � � N
can be observed only for very long chains. Indeed, for
´b � 10, which can also be a realistic value for DNA, the
crossover must occur at N values which are not accessible
to our simulation. Notice that, on the contrary, already for
rather short chains (N & 100) the behavior of P indicates
clearly that c � 1.7 , 2. So, while the investigation of C
in the presence of realistic stiffness would reveal the true
asymptotic nature of the transition only for extremely long
chains, c seems to be very little affected by crossover. This
discrepancy is due to the different way in which finite size
effects and temperature uncertainties affect the scalings of
P and C , as discussed above.

For model II it is not possible to detect crossover be-
havior in Cmax, since the transition is already first order
(f � 1) at ´b � 0. For ´b � 5 and ´b � 10, which, as
discussed below, are realistic choices, we estimate c �
2.06�6� and c � 2.04�8�, respectively. These values do not
deviate, within error bars, from that obtained at ´b � 0.
However, a very slight systematic decrease of c with in-
creasing ´b cannot be excluded. This decrease could be
determined by a mild crossover phenomenon induced by
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FIG. 4. Log-log plot of P vs l for model I with ´b � 5. Inset:
Scaling of Cmax as a function of N .
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´b . 0. Double stranded DNA has a persistence length
which is about 20–50 times longer than that of single
stranded chains [15]. According to our calculations the
persistence lengths of bounded segments for T 	 0.8Tc

[16] are about 10 and 30 times those of the unbound seg-
ments for ´b � 5 and ´b � 10, respectively. Therefore
the above parameter choices should be considered as rather
realistic for DNA. A single loop attached to very stiff
long segments (a typical configuration for our chains at low
temperatures) should experience very little excluded vol-
ume interaction with them. However, close to denaturation
more and more loops start forming and the whole chain
becomes rather flexible as the bubbles carry no stiffness.
Typical estimates in our simulations yield a persistence
length of just 2–3 lattice steps close to Tc, explaining why
the stiffness has little effect on the critical loop pdf. For a
correct physical interpretation of the models studied here
one should assign to each lattice monomer about 10 base
pairs (bp), thus we predict that the persistence length of
the double stranded chain close to denaturation would be
of the order of 20–30 bp.

We finally considered the effect of heterogeneity of the
binding energies of base pairs along the chain. As an
example we embodied in model II the information con-
cerning a specific DNA sequence, resorting to a strictly
microscopic interpretation of lattice monomers as single
bases. We took ´CG�´AT � 1.5 and ´b � 5, as expected
for real DNA. For two different sequences of length
N � 150 [17] we estimated c � 2.10�8�, indicating that
c robustly maintains the value determined for the homo-
geneous version of the model.

Another important consequence of our results concerns
codes [18] used to simulate melting curves of real DNA
sequences. These codes contain various parameters, such
as the stacking energy of neighboring base pairs, and use
c in the partition function for denaturated loops. The typi-
cal choice is c 	 1.7 [18], which is the appropriate value
for a single isolated loop, while a more consistent choice
would be c 	 2.1. It would be interesting to investigate the
consequence of this different value of c on the calculated
melting curves.

Summarizing, the DNA denaturation transition can be
characterized in terms of the algebraic decay of the cu-
mulative loop length pdf. The exponent c signals clearly
the asymptotic nature of the transition and is in fact well
defined already for relatively short chains. In all our cal-
culations we observe an onset of power-law behavior for
short loops (l * 5). This suggests that if direct measure-
ments could be realized, the sampling of P would not need
to include very long denaturated loops and rather micro-
scopic probes could be adequate. Promising in this respect
seem to be techniques based on fluorescent DNA probes
(see, e.g., Ref. [19]).

Excluded volume effects alone appear to be responsible
for the discontinuous nature of denaturation in the infinite
198101-4
chain limit. Our calculations provide in fact a final verifica-
tion of a conjecture advanced many decades ago by Fisher
[2] and recently corroborated and made more precise by
Kafri et al. [7]. The stiffness of the double stranded DNA
is not responsible for the first order character, contrary to
claims based on results for the PB model [5], but possibly
produces only very mild crossover effects on c. In realistic
conditions these effects should be barely detectable even
on relatively short chains.
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