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Full Counting Statistics of a Superconducting Beam Splitter
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We study the statistics of charge transport in a mesoscopic three-terminal device with one supercon-
ducting terminal and two normal-metal terminals. We calculate the full distribution of transmitted charges
into the two symmetrically biased normal terminals. In a wide parameter range, we find large positive
cross correlations between the currents in the two normal arms. We also determine the third cumulant
that provides additional information on the statistics not contained in the current noise.
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The number of charges transferred in a transport process
fluctuates due to quantum-mechanical uncertainty and sta-
tistics. Therefore, the outcome of a current measurement
accumulated over some time period fo is in general de-
scribed by a probability P(N), where N is the total num-
ber of charges transferred. P(N) is called the full counting
statistics (FCS) of the transport process [1]. The first two
moments of the FCS are related to the average current and
the current noise and are accessible to present experimen-
tal techniques. Higher-order correlations are likely to be
measured in the future. Several schemes to measure either
higher correlators or the full distribution have been pro-
posed recently [1-6].

The current noise, i.e., the second moment of the FCS,
is of particular interest. It can be used as a diagnostic
tool to probe the nature and the quantum statistics of the
charge carriers [7] and the existence of entanglement [8].
For superconductor(S)—normal metal(N) heterostructures,
a doubling of the shot noise in comparison to the nor-
mal case was predicted [9] and measured in diffusive het-
erostructures [10]. Recent calculations taking into account
the proximity effect in such structures [11] are in good
agreement with experimental results [12]. Multiterminal
S-N structures have been suggested to produce entangled
electron pairs [13,14].

So far, cross correlations, i.e., current correlations in-
volving different terminals, were measured only in normal
single-channel heterostructures [15]. These have con-
firmed the prediction [16] that current cross correlations
in a fermionic system are always negative. To our knowl-
edge, there is no measurement of cross correlations in a
system with superconducting contacts up to now. Theo-
retically, positive cross correlation with a single-channel
beam splitter for Andreev pairs injected from a supercon-
ductor have been predicted [17]. In a setup in which cross
correlations between a normal lead and a tunneling probe
are considered, the sign of the correlations was found to
depend crucially on the sample geometry [18]. A numeri-
cal study found positive cross correlations in a three-
terminal device with a few channels with ferromagnetic
contacts [19].

197001-1 0031-9007/02/88(19)/197001(4)$20.00

PACS numbers: 74.50. +r, 05.40.—a, 72.70.+m, 73.23.-b

In this Letter we find the full counting statistics of a
many-channel beam splitter that divides a supercurrent in
two normal quasiparticle currents. We calculate the dis-
tribution of the transmitted charges taking the proximity
effect into account. For comparison we also calculate the
FCS for the case in which the superconducting terminal is
replaced by a normal one.

The setup of our three-terminal device with one super-
conducting and two normal-metal terminals is shown in
Fig. 1. All three terminals are connected by tunnel junc-
tions to a small normal-metal island. We assume the island
to be large enough that we can neglect charging effects and
small enough that we can treat the Green’s functions of the
island as constant. Thus, we are restricted to energies be-
low the Thouless energy of the island. The system is then
appropriately described by the circuit theory of mesoscopic
transport [20], within which the counting statistics is eas-
ily accessible [2,11,21].

The circuit elements that are important for our case
are normal (superconducting) terminals and tunnel connec-
tors. The terminals are described by quasiclassical Green’s
functions, which depend on the type of the terminal (N
or §), chemical potential, temperature 7, and a counting
field y. We assume zero temperature and a symmetric
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FIG. 1. Three-terminal beam splitter. One superconducting or
normal terminal (S or N) and two normal terminals (N, and N,)
are tunnel coupled by conductances g, g, and g, to a common
central node. A current is passed from S/N into the two normal
leads that are kept at the same voltage. Ideal passive charge
counters are indicated by the counting fields y, xi, and x».

© 2002 The American Physical Society 197001-1



VOLUME 88, NUMBER 19

PHYSICAL REVIEW LETTERS

13 May 2002

bias at the two normal terminals. Since we are interested
in correlations between currents in different terminals, we
introduce different counting fields. The voltage is chosen
such that eV <« A. Charge transport (at T = 0) occurs
then only in the interval |E| = eV and we need to con-
sider only this energy interval below.

The Green’s functions of the two normal terminals are
then given by

GI,Z - ein,z%K/zéNe—in,z%K/Z, (1)
where Gy is the same for both normal terminals. At zero
temperature Gy = 6373 + (7 + iTy)1 for |E| = eV
and Gy = 6373 + sgn(E)é3(7 + i7p) for |E| > eV.
Here &;(7;) denote Pauli matrices in Nambu (Keldysh)
space. The counting rotation matrix is 7x = 637;. The
superconducting terminal in equilibrium is characterized
by Gs = &1 and a counting field y that enters as in (1).
If one node is connected to M terminals by means of
tunnel connectors, one can find a general form of the
FCS, i.e., the probability P(Ny,...,Ny) that Ny, .
charges are counted in terminal 1(2,...,M). The un-
known Green’s function of the central node is denoted
by GC. The matrix currents into the central node are
given by I, = gz—k[(v?c,(v?k], where the index k = 1,...,. M

labels the terminals and g, is the conductance of the re-
spective junction. The Green’s function of the central
node is determined by matrix current conservation on the
central node, reading Y2, I, = 2[S¥ | ¢,Gr. G.] = 0.
Employing the normalization condition G> = 1, the solu-
tion is

G _ Zkle gkék
\/Z%mzl gkgm{éb Gm}/z

To find the cumulant-generating function (CGF) S of

@)

P(Ny,...,Ny) we integrate the equations (—ifg/e) X
dS(x1,---»xm)/dxx = | dE Trigl;/8e [22]. We obtain
t dE
S(X1s s xm) = ——Of -

e 2

k8 1 G}
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X Tr\J %

k.m=1

This is the general result for an M-terminal geometry in

which all terminals are tunnel coupled to a common node.
We now evaluate Eq. (3) for our three terminal setup.

Introducing p; = 2ggi/[g*> + (g1 + g2)*] we find

_ Vio/g? + (g1 + g2)?

V2e

This result for the cumulant-generating function in-
corporates all statistical transport properties for our
present setup. The inner argument contains counting
factors for the different possible processes. A term
expli(xx + x1 — 2x) — 1] corresponds to an event in
which two charges leave the superconducting terminal
and one charge is counted in terminal k£ and one charge in
terminal /. The prefactors are related to the corresponding
probabilities. For instance, p; is proportional to the
probability of a coherent tunneling event of an electron

S(x1, x2, x) =

\/1 + \/1 + (pre' =X + preilaX))2 — (py + p))2.

“)

1

V ; _ ; _
SN(x1x2. x) = —32(g + g1 + g2) X \/1 + p(ei=x) — 1) + pY(ei=x) — 1),

where pl,) = 4g812)/(¢ + g1 + g2)°. Thus, one of the
square roots in Eq. (4) can be attributed to the multiple
tunnel-junction geometry, which is already present in the
normal configuration. The second square root in the CGF
for the superconducting case must then be due to the prox-
imity effect.

We now evaluate some average transport proper-
ties of the S|NN system and compare them to the
N|NN case. The currents into the different termi-
nals are obtained from derivatives of the CGF: I, =
(—ie/10)0S /0 xi| 1= ya=y=0- The transconductances
G, = I/V into terminal k(= 1,2) are then given by
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from the superconductor into terminal 1. A coherent
pair-tunneling process is therefore weighted with pi. This
is accompanied by counting factors which describe either
the tunneling of two electrons into terminal 1(2) [counting
factor exp(i2(x1(2) — x)) — 1] or tunneling into different
terminals [counting factor exp(i(y1 + x2 — 2x)) — 11.
The double square-root function shows that these different
processes are nonseparable.

It is interesting to compare Eq. (4) with the case in
which the superconductor is replaced by a normal metal.
The resulting CGF is

%)

| >
G = 8 gk(gr + &) , N 88k .
[g2 + (g1 + g2)°P/? gtea + g
(6)
The superscript S(N) denotes the S|NN(N|NN)
case. Noise and cross correlations are obtained

from second derivatives of the CGF, i.e., P,ﬂl =
(2€2/10)9*S(x1, X2, X)/ Xk X1y, =xo=xy=0- We define
Fano factors Fj; = P,Id/ZeI, and we denote the Fano
factor of the total current with F = F{; + Fa + 2F5.
We also calculate the third cumulant of the total
charge transfer (normalized to the Poisson value)
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Cs = (ie/It9)3°S(0,0, x)/d x| y=0. The results in the | ———r—— 2
superconducting case are s - C S ]
— Gl/g | . 5: F ]
N S\ —— N
- - - F i
Ff2=7g1g2 5 (1 = 5x%), FS =2 — 5x2, G /g 1T 1
(g1 + g2) 7 C ]
ot ey ) 0SF 1 =
C§ =4 - 3002 + 63x!, x=S8LT82 - - ]
g* + (g1 + &) i o5t :
In the N|NN case, on the other hand, we find E E
0 v e by O R R R
0 1 2 370 1 2 3
8182 N
FN - _7'x b F = 1 - z'x b T T T T T T T T T T T T T T T
" (g1 + g2 " N ® Iy T T 1 4 T T ]
+ i T L S i
O = 1 — buy + 302, xNzg(gl—gz)z. \ — —
(g +a + &) - 1 T NI
05K\ — £ | —
All other Fano factors can be deduced from Fi, and F L ] 2r 7]
using the relations > ; Fy; = 0 and Fy; = Fj;. The trans- - 1 i x 12 T
port properties are summarized in Fig. 2. In the fig- 0 B N i ]
ure the cross correlations are plotted as f1, = Fia(g) + \ ] 1
g2)*/g182. Most remarkably, the cross correlations F 5 L - - 7
are positive if x is small, whereas F}5 is always negative 0 = 1 == |2 = 3 00 = Il = é = 3
in the normal state. Here the Fano factor F5(FY) is close
to 2(1) . Going to the regime g = (g; + g2) suppresses gl(g,+g,) gl(g,+g)

the Fano factor FS®) below 2(1) and leads to negative
cross correlations F',. In the limiting case g = (g, + g2)
the Fano factors are FS = 3/4 and F¥ = 1/2, and the
cross correlations are Fiy = Flb = —g1g2/4(g1 + g2).
The third cumulant is always positive, but shows a strong
suppression around the resonant conductance ratio g =
(g1 + g2). In the limit of small x (xy) the third cumu-
lantis 4 (1) , corresponding to the effective charge squared
transferred in a tunneling process [3]. However, the vari-
ation with g/(g; + g2) in the S|NN case is more pro-
nounced than in the N|NN case.

As an interesting side remark we point out that F H=0
and F5 = 1 for x? = 1/5. This looks like a signature of
uncorrelated charge transfer in units of e. However, the
third cumulant C§ = 13/25 differs from the correspond-
ing value for uncorrelated 1e-charge transfer, viz., C3 = 1.
Thus, higher correlations show that the charge transfer is
still correlated.

We briefly discuss the influence of an asymmetry g; #
g2 of the beam splitter. The cross correlations are reduced,
both in the S|NN and in the N|NN case. However, the
positive cross correlations in the superconducting state per-
sist for all values of the asymmetry. Cumulants of the to-
tal charge transfer like the conductance, F5-V and ng N
are independent of this asymmetry.

Using the CGF from Eq. (4), we can identify the physi-
cal processes leading to our previous results. We have
seen from (7) that positive cross correlations are found if
g/(g1 + g2)isnotclose to 1. Then, p;, < 1 and we can
expand Eq. (4) in p;,. Dropping the trivial dependence
on y, the CGF can be written as
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FIG. 2. Conductance, Fano factors, cross correlations, and
third cumulant of the beam splitter. The thick lines correspond
to the S|NN case and the thin lines to the N|NN case. The
conductance (upper-left panel) in the superconducting case
shows a maximum around g = g; + g,. In the normal
state, the conductance varies between g and g, + g,. In
both cases, the current noise (upper-right panel) shows a
suppression around g = g; + g, as compared to the limiting
values of 2 in the S|NN case and 1 in the N|NN case. Large
positive cross correlations occur in the superconducting case
(lower-left panel), whereas they are always negative in the
normal case. Around g = g; + g, the superconducting
cross correlations become negative. Note that what is plotted

here is ffz/N = FISZ/N(gl + g22)?/g18>. The third cumulants

(lower-right panel) are always positive. Around g = g; + g»
they are strongly suppressed. In the S|NN case, C5 has a
double minimum here, as shown in the blowup.

oV g2

e [g2+ (g1 + g2)?P?
X (g%eizXl + g%eizXz + 2g1gzei()“+)‘2)).
)

The CGF is composed of three different terms, correspond-
ing to a charge transfer of 2e either into terminal 1 or termi-
nal 2 (the first two terms in the bracket) or separate charge
transfer into terminals 1 and 2. According to the general
principles of statistics, sums of CGFs of independent sta-
tistical processes are additive. Therefore, the CGF (9) is a
sum of CGFs of independent Poissonian processes. Cross
correlations are obtained from derivatives with respect to
X1 and x». Thus, the first two terms in (9) corresponding
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to two-particle tunneling either into terminal 1 or 2 do not
contribute. It is only the last term which yields cross corre-
lations, and those are positive. Poissonian statistics are the
statistics of uncorrelated events, which in our case means
all tunneling events are independent. Thus, a two-particle
tunneling event into one of the normal terminals is not cor-
related with other tunneling events and does not contribute
to cross correlations, but only to the autocorrelations. The
two-particle tunneling into different terminals, however, is
automatically positively cross correlated. The cross corre-
lations are therefore positive.

The total probability distribution P(N, N2) correspond-
ing to (9) can be found. It vanishes for odd values of
(N; + N,) and for even values it is

e N2 E)Win/2 <N1 + N2>TN, v
EE L om

P(N,N,) =
(10)

Here we have defined the average number of transferred
electrons N = 1,GSV /e and the probabilities T2 =
g12)/(g1 + g2) that one electron leaves the island into
terminal 1(2). If one would not distinguish electrons
in terminals 1 and 2, the charge counting distribution
can be obtained from (9) by setting y; = 2 = y and
performing the integration. This leads to P (N) =
exp(—N/2) (N/2)¥/2/(N/2)!, which corresponds to a
Poisson distribution of an uncorrelated transfer of electron
pairs. The full distribution (10) is given by PtSOt (N; + Ny),
multiplied with a partitioning factor, which corresponds
to the number of ways N; + N, identical electrons can be
distributed among the terminals 1 and 2, with respective
probabilities 7 and 7>. Note that 7y + T, = 1, since the
electrons have no other possibility to leave the island.

In contrast to that, we obtain in the normal case for
1), < 1 the probability distribution

— N, — N,
v N N
PY(N|,Ny) = ¢ N]N—ll!e Ny sz! . (11)

Here we have abbreviated the average number transferred
into terminal i by N;. Thus, the distribution in the normal
case is the product of two Poisson distributions of charge
transfers into the two terminals. In the superconducting
case such a factorization is not possible.

In conclusion, we have studied the full counting statis-
tics of a three-terminal device with one superconducting
and two normal leads. The system is biased such that a
supercurrent is passed from the superconductor into the
two normal leads, with no net current between the normal
leads. Thus, the device acts as a sort of beam splitter. We
have calculated the full distribution of transmitted charges
using the extended Keldysh-Green’s function method fully
accounting for the proximity effect. Our main finding is
large positive cross correlations of the currents in the two
normal terminals in a wide parameter range. These should
be easily accessible experimentally. These positive cor-
relations originate from independent Poisson processes of
coherent tunneling of charges into the different terminals.
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These dominate the cross correlations, since two-particle
tunneling into the same lead does not contribute to the
cross correlations. We have also calculated the third cumu-
lant which provides additional information on the current
statistics not contained in the current noise.
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