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Circuit Theory for Full Counting Statistics in Multiterminal Circuits
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We propose a theory that treats the current, noise, and, generally, the full current statistics of electron
transfer in a mesoscopic system in a unified, simple, and efficient way. The theory appears to be a
circuit theory of 2 3 2 matrices associated with Keldysh Green functions. We illustrate the theory by
considering the big fluctuations of currents in various three-terminal circuits.

DOI: 10.1103/PhysRevLett.88.196801 PACS numbers: 73.23.–b, 05.40.–a, 72.70.+m, 74.40.+k
The field of quantum noise in mesoscopic systems has
exploded during the last decade, with most achievements
being summarized in a recent review article [1]. Measure-
ment of fractional charge in quantum Hall regime [2], noise
measurements in atomic-size junctions [3], and supercon-
ductors [4] are milestones of the field and demonstrate the
importance of quantum noise as a unique tool to study elec-
tron correlations and entanglements of different kinds. A
very important step has been made in [5] where an elegant
theory of full counting statistics (FCS) has been presented.
This theory encompasses not only noise, but all higher
momenta of the charge transfer.

Starting from the pioneering work of Büttiker [6], spe-
cial attention has been paid to noise and statistics of elec-
tron transfer in multiterminal circuits. The correlations of
currents flowing to different terminals reveal Fermi sta-
tistics of electrons. These cross correlations have been
recently observed [7]. Although the noise correlations
for several relevant layouts have been understood [1], the
evaluation of FCS still encountered difficulties. For in-
stance, an attempt to build up FCS with the “minimal cor-
relation approach” [8] has led to contradictions [9]. This is
unfortunate, since higher-order current correlations supply
information about higher-order electron correlations and
multiparticle interference. This information is of funda-
mental importance and can be hardly obtained by any other
means.

In this Letter, we present a calculation scheme that al-
lows for easy evaluation of FCS in a multiterminal meso-
scopic system. It is of great intellectual enjoyment that
this scheme is a simple and a universal one. In fact, it is
hardly more complicated than a conventional circuit the-
ory of electric transport and is based on a slight extension
of Kirchoff rules to 2 3 2 matrix structures.

We start by introducing current operators Îi , each being
associated with the current to a certain terminal i. Extend-
ing the method of [10] we introduce a Keldysh-type Green
function defined by√
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Here we follow notations of a comprehensive review [11],
xi are time-dependent parameters, t̄3 is a 2 3 2 matrix
in Keldysh space, and Ĥ is the one-particle Hamiltonian
that incorporates all information about the system layout,
including boundaries, defects, and all kinds of elastic
scattering. We use “hat,” “bar,” and “check” to denote op-
erators in coordinate space, matrices in Keldysh space, and
operators in direct product of these spaces, respectively.
Equation (1) defines the Green function unambiguously
provided boundary conditions are satisfied: Ǧ�t, t0� �
Ḡ�x, x0; t, t0� approaches the common equilibrium Keldysh
Green functions Ǧ

�0�
i �t 2 t0� provided x, x0 are sufficiently

far in the terminal i. These Ǧ
�0�
i �t 2 t0� incorporate in-

formation about the state of the terminals: their voltages
Vi and temperatures Ti .

One can easily see by traditional diagrammatic methods
[11] that the expansion of Ǧ in xi�t� generates all possible
diagrams for higher-order correlators of Îi�t� and thereby
incorporates all the information about statistics of charge
transfer. If we limit our attention to the low-frequency
limit of current correlations, we can keep time-independent
xi . In this case, the Green functions are functions of
time difference only and Eq. (1) separates in energy rep-
resentation. It is convenient to introduce the following xi-
dependent action defined as a sum of closed diagrams:
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This allows us to express the probability for Ni electrons
to be transferred to the terminal i during time interval t0,

P��Ni�� �
Z p

2p

Y
i

dxi

2p
e2S��xi��2i

P
i
Nixi . (3)

(Higher-order) derivatives of S with respect to xi give
(higher-order) moments of P��Ni ��. First derivatives yield
average currents to terminals; second derivatives corre-
spond to the noises and noise correlations.

Using special properties of current operators, x-
dependent terms in Eq. (1) can be gauged away [10,12].
The x dependence of Ǧ is thereby transferred to the bound-
ary conditions: the gauged Green function far in each
© 2002 The American Physical Society 196801-1



VOLUME 88, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 13 MAY 2002
terminal shall approach Ǧi�e� defined as

Ǧi�e� � exp�ixi t̄3�2�Ǧ�0�
i �e� exp�2ixi t̄3�2� . (4)

The precise form of the functions Ǧ
�0�
i �e� is defined below

in the text [see Eq. (8)].
In the present form, Eq. (1) with relations (4),(2) solves

the problem of determination of the FCS for any arbitrary
system layout: one just has to find the exact quantum-
mechanical solution of a Green function problem. This
is hardly constructive, and we proceed further by deriving
a simplified semiclassical approach. First, we note that
even in its exact quantum-mechanical form Eq. (1) pos-
sesses an important property. We consider the quantity de-
fined similar to the standard definition of current density,
j̄a�x, e� � limx!x 0�=0a 2 =a�Ḡ�x, x0; e��m. By virtue
of Eq. (1) this quantity conserves so that

≠j̄a�x, e��≠xa � 0 . (5)

This looks like the conservation of particles at a given
energy. However, this relation contains more information
since it is a conservation law for a 2 3 2 matrix current.

Next, we construct a theory which makes use of this con-
servation law. We concentrate on the semiclassical Green
function in coinciding points, Ḡ�x, e� � iḠ�x, x0; e��pn

[11,13,14]. It satisfies the normalization condition Ḡ2 �
1̄. We relate the “current density” j̄ to gradients and/or
changes of Ḡ�x�, very much like the electric current den-
sity is related to the voltage in circuit theory of electric
conductance. Following the approach of the circuit theory,
we separate a mesoscopic layout into elements: nodes and
connectors, so that Ḡ�x� is constant across the nodes and
drops across the connectors (see Fig. 1). This separation
of actual layout is rather heuristic, similar to the separation
of an electric conductor of a complicated geometry onto
nodes and circuit theory elements. The bigger the number
and the finer the mesh of the nodes and connectors, the bet-
ter the circuit theory approximates the actual layout. The
nodes are similar to the terminals; the difference is that Ḡ
is fixed in the terminals and yet to be determined in the
nodes. The Ḡ in nodes are determined from Kirchoff rules
reflecting the conservation law (5): the sum of the matrix
currents from the node over all connectors should equal
zero at each energy. For this, we should be able to express
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FIG. 1. The graph of the circuit theory, associated with a
3-terminal mesoscopic system.
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the matrix current via each connector as a function of two
matrices Ḡi,j at its ends.

The connector �i, j� can be quite generally character-
ized by a set of transmission eigenvalues T �ij�

n [14,15]. The
problem to solve is to express matrix current via the con-
nector in terms of Ḡi� j�. This problem shall be addressed
by a more microscopic approach and was solved in [14]
for the Keldysh-Nambu matrix structure of Ǧ. It is good
news that the derivation made in [14] does not depend on
concrete matrix structure and can be used for the present
problem without any modification yielding

Īij �
1

2p

X
n

Z
dE

T �ij�
n �Ḡi , Ḡj�

4 1 T
�ij�
n ��Ḡi , Ḡj� 2 2�

. (6)

Each connector �i, j� in the layout contributes to the total
xi-dependent action (2). The corresponding Sij contribu-
tion reads [12]
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3 Tr ln

∑
1 1

1
4

T �ij�
n ��Ḡi, Ḡj � 2 2�

∏
. (7)

Now we are ready to present a set of circuit theory rules
that enables us to evaluate the FCS for an arbitrary meso-
scopic layout. (i) The layout is separated onto terminals,
nodes, and connectors. (ii) The Ḡj in each terminal j is
fixed by relation (4) thus incorporating information about
voltage, temperature, and counting field x in each node.
(iii) For each node k, the matrix current conservation yields
a Kirchoff equation

P
i Īik � 0, where the summation is

going over all connectors �i, k� attached to node k, and
Īik are expressed with (6) in terms of Ḡi�k�. (iv) The so-
lution of resulting equations with condition Ḡ2

k � 1 fixes
Ḡk in each node. (v) The total action S�x� is obtained by
summing up the contributions Sij��xi�� of individual con-
nectors; those are given by (7): S��xi�� �

P
�i,j� Sij��xi ��.

(vi) The statistics of electron transfer is obtained from re-
lation (3).

It is time to discuss the limits of applicability of the
whole scheme. By virtue of the semiclassical approach,
the mesoscopic fluctuations coming from interference of
electrons penetrating different connectors are disregarded,
so that we assume that conductivities of all connectors are
much bigger than conductance quantum e2�p h̄. The same
condition provides the absence of Coulomb blockade ef-
fects in the system. Besides, we have disregarded the pos-
sible processes of inelastic relaxation in the system. The
latter can be eventually taken into account, since the use of
the Keldysh Green functions technique allows for pertur-
bation treatment of interaction and relaxation. However,
it would considerably complicate the scheme. The point
is that the inelastic scattering would mix up the Ḡ at dif-
ferent energies, so that one cannot solve the circuit theory
equations separately at each energy.

As an illustration of the presented scheme, we consider
in the rest of the Letter the FCS of the 3-terminal chaotic
196801-2
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quantum dot. The system is sketched in the inset of Fig. 2.
The heuristic circuit, associated with this mesoscopic sys-
tem, is shown by dashed lines. It includes only three
terminals, three arbitrary connectors, associated with the
contacts, and the node �4�, representing the quantum dot
itself. This separation is valid provided the cavity is in
the quantum chaotic regime (see [16] for a definition).
This regime corresponds to full isotropization of the Green
function Ǧ�x, x0, e� within the dot.

Since the normalization Ḡ2
k � 1 holds for each vertex,

we use the parametrization Ḡk � gk ? t , gk ? gk � 1.
Here gk is a 3D vector, and t � �t̄1, t̄2, t̄3�. In the ab-
sence of counting fields the Green functions in the termi-
nals are given by a zero condition

Ḡ
�0�
k �

µ
1 2 2fk 22fk

22�1 2 fk� 2fk 2 1

∂
, (8)

where the Fermi distribution function fk�E� � �exp��E 2
eVk ��Tk� 1 1�21 accounts for the bias voltages Vk and
the temperatures Tk in the terminals. The xi dependence
of Ḡk�x� is then given by Eq. (4).

We see that Ḡ4�x� � g4 ? t is in fact the only function
to be found. For that, we proceed by applying the cur-
rent conservation law,

P3
k�1 Īk,4 � 0, inside the dot. We

present the currents Īk,4 given by (6) in the form Īk,4 �
1
2 Zk�gk ? g4� �Ḡk , Ḡ4�, the scalar function Zk�x� incorpo-
rating the information about transmission eigenvalues in
each connector k: Zk�x� �

P
n T �k,4�

n ��2 1 T �k,4�
n �x 2 1��.

It can be evaluated for any particular distribution r�T� of
transmission eigenvalues in the given connector and com-
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FIG. 2. The logarithm of the current probabilities in the
3-terminal chaotic quantum dot as a function of I3, under
condition I1 � I2. The inset presents the system configuration.
The resistances R of all connectors are assumed to be equal.
1: tunnel connectors; 2: diffusive connectors; 3: ballistic
connectors.
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pletely defines its scattering properties. For an example,
if we denote R0 � p h̄�e2, then R21

k � 2R21
0 Zk�1� is an

inverse resistance of the connector. One can also ex-
press the Fano factor F � 	T�1 2 T �
�	T
 as F � 1 2
2�d�dx� logZ�x�jx�1. With the use of Zk�x� the conserva-
tion law can be efficiently rewritten as �

P3
k�1 pkḠk , Ḡ4� �

0, where pk � Zk�gk ? g4�. The latter enables one to
look for the vector g4 in the form g4 � M21

P3
k�1 pkgk ,

with M�x� being an unknown normalization constant to be
determined.

The total action can be found by applying rule (v) of
circuit theory and reads

S�x� �
t0

p

3X
k�1

Z
de Sk�gk ? g4� . (9)

The partial contributions Sk�x� in the above equation
should be determined from the relation ≠

≠x Sk�x� �
2Zk�x�, Sk�1� � 0.

We specifically consider three particular types of
connectors: tunnel (T), ballistic (B), and diffusive (D).
The corresponding contributions to action are ST �x� �
2

1
2 �R0�R� �x 2 1�, SB�x� � 2�R0�R� log��1 1 x��2�,

SD�x� � 2
1
4 �R0�R� log2�x 1

p
x2 2 1 � [10], R being

the resistance of the connector. For the tunnel connector
Tn ø 1 for all n. For the ballistic connector N channels
are opened (Tn � 1 for n # N), and the others are closed.
In the diffusive connector the transmission eigenvalues
are distributed according to universal law r�T� � R0�
2RT

p
1 2 T .

Analytical results for FCS (9) are plausible only for the
system with tunnel connectors. To assess a general situ-
ation we found g4 for given xi numerically. To find the
probability distribution, we evaluated the integral (3) in the
saddle point approximation, assuming xi to be complex
numbers. Saddle point approximation is always valid in
the low frequency limit we consider, since in this case
both action S and the number of transmitted particles
Ni � Iit0�e ¿ 1. Because of the current conservation
law only two of three counting fields xi are independent,
and one can set x3 � 0. The relevant saddle point of the
function V�x� � S�x� 1 ix1I1t0�e 1 ix2I2t0�e always
corresponds to purely imaginary numbers �x�

1 , x�
2 �. The

probability reads P�I1, I2� � exp�2V�x���. Evidently,
V�x�� is the Legendre transform of the action, and it can
be regarded as an implicit function on I�x��.

In the following we assume the shot noise regime eV ¿

kT when the thermal fluctuations can be disregarded. The
energy integration in (9) becomes trivial, since fi�e� � 0
or 1, and it is sufficient to consider only the case V1 �
V2 � 0, V3 � V . Any other possible setup can be reduced
to the number of previous ones by appropriately subdivid-
ing a relevant energy strip. The results of these calculations
are shown in Figs. 2 and 3. We see that the maximum
of probability occurs at I1 � I2 � 2V�3R, I3 � 2V�3R
that simply reflects the usual Kirchoff rules. The current
196801-3
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FIG. 3. The contour maps of the current distribution log�P�I1, I2�� in the 3-terminal chaotic quantum dot for different configurations
of connectors: (a) ballistic connectors; (b) diffusive connectors; (c) tunnel connectors.
distribution P�I1, I2� for a ballistic system is bounded. It is
due to the fact that ZB�x� contains the finite number of open
channels, contrary to the tunnel- or diffusive-type configu-
rations, where it is not the case. From (9) we can also find a
zero noise and noise correlations matrix S̃ij � eR21VFij ,
F11 � F22 � �4 1 3F��27, F33 � �4 1 6F��27, F12 �
22�27, F13 � F23 � 2�2 1 3F��27, where F is a Fano
factor. Since FB � 0, FD � 1�3, and FT � 1, one con-
cludes that for a fixed average currents through connectors
the Gaussian’s current fluctuations will increase in the se-
quence ballistic ! diffusive ! tunnel. Figures 2 and 3
show that a similar behavior is also traced in the regime of
the large current fluctuations. The essential point here is
that the cross correlations always persist regardless of the
concrete construction of the connectors. For the case of
multilead chaotic cavities the results for shot noise in our
theory coincides with Refs. [8,17].

In conclusion, we present a constructive theory for
counting statistics for electron transfer in mesoscopic
systems. With this theory, one can easily make theoretical
predictions for all FCS, thereby facilitating experimental
activities in this direction. Up to now, only the noise
has been measured. In our opinion, the measurements
of FCS can be easily performed with threshold detectors
that produce a signal provided the current in a certain
terminal exceeds the threshold value. If the threshold
value exceeds the average current, the detector will be
switched by relatively improbable fluctuations of the
current described by FCS, its signal being proportional to
the probability P�I1, I2� of these fluctuations.
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