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Fractal Properties of Trivelpiece-Gould Waves in Periodic Plasma-Filled Waveguides
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It is shown that dispersion curves describing a spectrum of Trivelpiece-Gould (TG) waves in periodic
plasma-filled waveguides have a fractal nature. They are not solid lines as for other types of waves in
periodic waveguides but suffer from discontinuities of the first kind at any kz � �P�Q� �2m 1 1�p�d,
where P and Q are integers, d is the period of the corrugation, and m is the transverse index of a mode.
The gaps correspond to forbidden bands. The evaluation of the Hausdorf dimension of the dispersion
curves is presented. Finally, qualitative consequences of the fractal nature of TG waves for plasma
microwave electronics are discussed.
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Investigation of electromagnetic properties of bounded
plasma systems is of great scientific and practical in-
terest. In particular, such systems can be exploited in
a set of novel technological applications such as elabo-
ration of plasma methods for collective acceleration,
high-power microwave generation, transportation of
high-current electron beams, etc. Smooth or corrugated
cylindrical plasma waveguides are the most widespread
bounded plasma systems which can be met in different
applications. Electromagnetic properties of smooth
cylindrical plasma waveguides at frequencies below
the plasma frequency have been studied in detail both
theoretically and experimentally [1]. It is well known that
the spectrum of the TG modes in the simplest case of a
smooth waveguide filled with a strongly magnetized cold
collisionless uniform plasma is given by the simple expres-
sion kz�v� � �k2 1 m2

n�j´�v�jR2�1�2, where ´�v� �
1 2 v2

p�v2, R means radius of the waveguide, mn

nth root of the zeroth order Bessel function, kz lon-
gitudinal wave number, vp plasma frequency, and v

wave frequency. However, the treatment of a corrugated
plasma-filled waveguide even in this simplest case meets
almost insuperable theoretical and numerical difficulties
[2,3]. The generally accepted approach which is tradition-
ally used for periodic media and associated with the field
representation as a superposition of a finite number of
spatial harmonics seems to be useless even in this simplest
case. It yields the so-called dense spectrum [2,3] which
contains spurious information [4–7] and leads to the di-
vergence of numerical results. Recently, new approaches
have been developed [4–7] which allow us to get rid of
spurious solutions and to reduce the problem to the func-
tional equation describing adequately the real spectrum
of TG modes in periodic plasma-filled waveguides. Only
the simplest case of planar periodic waveguides has been
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treated and the considerations have been restricted to a
quasistatic approximation �kz ¿ v�c�. Extending the
new approaches to more realistic situations is possible but
before doing that, it seems to be reasonable to perform
an exhaustive numerical and analytical analysis of the
simplest geometry and to remove some inaccuracies in
the analytical and numerical considerations as well as in
the physical interpretation of the results obtained in [4,6].
This is the main aim of this Letter.

First following [4,6] consider a planar waveguide of
periodically varying width which is loaded with a uni-
form cold collisionless plasma and embedded in a strong
axial static magnetic field (see Fig. 1). The electromag-
netic field is assumed to be TM polarized, �Ex , Hy , Ez� �
e2ivt�v , vp�, electrostatic, and symmetric with respect
to the z axis �Ez�x, z� � Ez�2x, z��. Dispersion properties
and field distribution of the TG modes in such a structure
are described by the functional equation for the axial elec-
tric field Ez on the waveguide axis [5–7]:

C�z 1 w�z�� �1 1 w 0�z�� 1 C�z 2 w�z�� �1 2 w0�z�� � 0 ,

(1)

FIG. 1. Geometry of the problem.
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where C�z� � Ez�0, z�, w�z� � j´�v�j1�2X0�z�, and x �
X0�z� is the equation of the periodic waveguide boundary:
X0�z 1 d� � X0�z�, d is the period of the structure. The
axial electric field on the waveguide axis is assumed to
be quasiperiodic: C�z 1 d� � eikz dC�z�. The prime
denotes differentiation with respect to z.

It should be mentioned that functional equations of the
form of Eq. (1) can be met rather frequently in different
fields of theoretical and mathematical physics (see, for
example, [8] and the references therein). In contrast to
[8], here Eq. (1) should be considered as an eigenvalue/
eigenfunction problem. Introducing a new function by
the relation C�z� � exp�ikzz 1 iu�z��, we arrive at the
following equation for the periodic function u�z�:

u�z 1 w�z�� 2 u�z 2 w�z�� � i ln
1 1 w0�z�
1 2 w0�z�

1 �2m 1 1�p 2 2kzw�z� .

(2)

Note that Eq. (2) characterizes an ordinary spectrum of
TG modes in periodic plasma waveguides [without spuri-
ous solutions which are inherent in Eq. (1)] and m means
number of a mode (see also [6] for details). Furthermore,
Eq. (2) can be rewritten in the form

u� f�t�� 2 u�t� � i ln� �f�t�� 1 �2m 1 1�p

1 kz�t 2 f�t�� , (3)

where f�t� is an implicit function:

f�t� � z 1 w�z�, t � z 2 w�z� , (4)

and �f � df�dt. The argument v is here and in the fol-
lowing omitted. Finally, we introduce a periodic function
F�t� � f�t� 2 t and assume that for some v and t

F�t� � nd , (5)

where n is an integer. When t varies inside the interval
�0, d�, the frequency v which satisfies the condition (5)
is continuously varying in the interval �v2n, v1n� due to
the continuity of f�t�. Using (4) we can find that v6n �
vp��1 1 �nd�X06�2�1�2, where X06 are the maximal and
minimal widths of the waveguide. It is easy to show that
for v2n , v , v1n, Eq. (5) has at least two roots t1,2

such that �F�t1� . 0 and �F�t2� , 0 due to the periodicity
of F�t�. Taking Eq. (3) at the points t1,2, where due to the
periodicity of u�t� the left-hand side of Eq. (3) is zero, we
come to the relations

kznd � p�2m 1 1� 2 i ln� �F�t1,2� 1 1� , (6)

which are not satisfied simultaneously at any kz and v

since �F�t1� and �F�t2� are different from each other. Hence
the intervals of frequencies �v2n, v1n� can be treated as
forbidden bands. At the ends of these intervals, t1 � t2
and �F�t1,2� � 0. Hence Eq. (5) is satisfied yielding kz �
k0�m 1 1�2��n with k0 � 2p�d.
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The obtained forbidden bands have been found numeri-
cally in [6,7]. They should be considered as the first-order
forbidden bands. It will be shown below that there exists
also an infinite number of higher-order forbidden bands
which were missed in [6,7] since they were very narrow
for those parameters considered in [6,7]. Substituting f�t�
for t, we can rewrite Eq. (3) in the form

u� f��� f�t����� 2 u��� f�t���� � i ln
df��� f�t����

df�t�
1 �2m 1 1�p

1 kz��� f�t� 2 f��� f�t������� . (7)

Adding Eq. (7) and Eq. (3) yields

u� f��� f�t����� 2 u�t� � i ln
df��� f�t����

dt
1 2�2m 1 1�p

1 kz�t 2 f��� f�t����� . (8)

Repeating this procedure s times, we obtain

u��� f�s��t���� 2 u�t� � i ln ��� �f�s��t���� 1 s�2m 1 1�p

1 kz���t 2 f�s��t���� , (9)

where f�s��t� � f��� f�. . . ��� f
| {z }

s

�t���� . . .����, s � 1, 2, . . . , `. In-

troducing a periodic function Fs�t� � f�s��t� 2 t, we can
proceed in the same way as in the analysis for the first-
order forbidden bands. Finally, we get equations defining
the upper and lower boundary frequencies v

�s�
6n for the nth

forbidden band of the sth order:

Fs�t� � nd, �F�t� � 0 . (10)

The wave numbers corresponding to these frequencies can
be derived analytically assuming that the left-hand side of
Eq. (9) is equal to zero:

kz � s
m 1 1�2

n
k0 . (11)

Hence a dispersion curve for TG modes in a periodic
plasma waveguide shows an infinite number of gaps form-
ing an infinite number of stop bands when kzd�p�2m 1 1�
is a rational number, where m is the transverse index of the
TG mode.

Figure 2 shows the curve for the fundamental TG
mode �m � 0� calculated using Eqs. (10) and (11) for a
sinusoidally rippled plasma-filled waveguide: X0�z� �
x0�1 1 a cosk0z�. All forbidden bands up to the 40th
order were taken into account. The accuracy in the
computation of the frequencies was within 1023%. In the
inset, the fine structure of the dispersion curve is shown
demonstrating its self-similarity. Moreover, dispersion
curves for TG modes in periodic plasma-filled waveguides
are not ordinary solid lines as for electromagnetic modes.
The topological properties of these curves can hardly
be characterized by an ordinary topological dimension.
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FIG. 2. Dispersion curve for the fundamental TG mode in the
case of a sinusoidally rippled plasma-filled waveguide for pa-
rameters: a � 0.2, x0 � 1.4 cm, k0 � 3.67 cm21.

Instead they can be characterized by a fractal or Hausdorf
dimension DH which can be calculated by applying the
method of covering [9]. According to this method, the
whole frequency range vmin , v , vp, where vmin

corresponds to w 0
max � 1 [4–7], is covered by equal

pieces of length r. Then the passbands of TG modes are
plotted. To determine the passbands, we should remove
all those forbidden bands which are located inside the
range vmin , v , vp. Since the number of passbands
as well as the number of forbidden bands is infinite in this
interval, the passbands are determined as those frequency
intervals which remain after extracting all forbidden
bands up to some high but fixed order smax. The number
of pieces N�r� which fully or partially overlap with the
assumed passbands are then calculated. Then the depen-
dence of lnN �r� on ln�1�r� and its derivative are plotted.
The results of the calculations for d�lnN�r���d�ln�1�r��
as a function of ln�1�r� are shown in Fig. 3(a). As can be
seen, this dependence has an interval �6 , ln�1�r� , 12�
where it is almost constant. Increasing the accuracy
of the computations leads to a smoother curve in this
interval, while increasing smax leads to an expansion of
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this interval. The value of d�lnN�r���d�ln�1�r�� in this
interval is equal to the sought quantity DH . From the
results obtained it follows that for the case considered
DH � 0.968 6 0.002. It is the same for different radial
TG modes. When the depth of corrugation decreases, DH

tends to unity and the fractal dispersion curves transform
to the ordinary dispersion curves of a smooth plasma-filled
waveguide.

The considered method of determination of passbands
for TG modes resembles the method of construction of the
well-known fractal manifold, the Cantor set [9]. There-
fore, for comparison, Fig. 3(b) shows the dependence of
d�lnN�r���d�ln�1�r�� on ln�1�r� obtained in the same way
for the Cantor set at sC � 10 and 11, where sC is the num-
ber of iterative steps for the Cantor set construction and has
the same meaning as smax. As we can see, the curves of
this dependence are qualitatively very similar in both cases.
Moreover, from Fig. 3(b) it follows that DH � 0.63 what
is very close to the exact value of DH which, in this case,
can be derived analytically as DH � ln2� ln3.
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FIG. 3. Dependence of d�lnN�r���d�ln�1�r�� on ln�1�r� for
(a) a sinusoidally rippled plasma-filled waveguide with the same
parameters as in Fig. 2, and (b) for the Cantor set.
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The spectral properties of the TG modes were also in-
vestigated in [4] on the basis of the theory of circle maps.
Some of the properties of the TG modes were correctly
predicted and the consideration developed there could be,
to some extent, perfectly complementary to that one pre-
sented here. In particular, it was shown that, in the bands

v
�s�
2n , v , v

�s�
1n, Eq. (1) can have eigenfunctions in the

class of generalized functions corresponding to a constant
kz. Therefore, these bands were interpreted as the bands
of spatial mode locking. However, in our opinion, such an
interpretation is hardly compatible to the physical nature
of the problem under consideration. None of these eigen-
functions with fixed v and kz can give a smooth physically
meaningful field distribution. This can be formed only by
a superposition of them. From the other side, a superpo-
sition of them cannot be described by any dispersion rela-
tion. Moreover, such oscillations are strongly damped due
to spreading and intensive phase mixing. Their asymptotic
behavior does not contain undamped or slowly damped
terms proportional to exp�2ivt�. Since they decay faster
than in accordance with the exponential law, they can
be referred to as so-called nonproper oscillations accord-
ing to the terminology accepted for Langmuir waves in
a cold nonuniform plasma [10]. Otherwise, this would
lead to the existence of waves with infinite group veloc-
ity: ygr � dv�dkz � ` at v

�s�
2n , v , v

�s�
1n, whereas

an interpretation of these bands as forbidden bands is very
natural from the physical point of view. Indeed, forbid-
den bands for waves of arbitrary nature appear in periodic
waveguides due to the reflection of the waves from the pe-
riodically varying boundary of the waveguide. Moreover,
forbidden bands are formed near the intersections of the
dispersion curves of the corresponding smooth waveguide
with the same dispersion curves but shifted by nk0 in the
v-kz plane, where n � 61, 62, . . . 6`. The following
rules hold: the frequency of the intersection point usually
lies near the middle of the forbidden band and the wave
number of the intersection point coincides with the wave
number of the formed gaps. It is easy to verify that the
wave numbers of the intersection points exactly coincide
with the wave numbers defined by (11), while the frequen-
cies at the intersection points lie between v

�s�
2n and v

�s�
1n,

i.e., inside the potential stop bands.
The considered fractal properties of the TG modes can

have important consequences for understanding the plasma
behavior in bounded configurations. The ordinary TG
modes which are counterparts of TG modes in a smooth
waveguide have a fractal spectrum which is similar to the
Cantor set in v space, i.e., their frequencies lie outside
the infinite set of intervals v

�s�
2n , v , v

�s�
1n. At fre-

quencies v
�s�
6n, TG modes are not waves in the common

sense. Although we assume an infinite length of the pe-
riodic plasma-filled waveguide, they behave like proper
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oscillations in resonators. The frequencies v
�s�
6n can be

considered as the eigenfrequencies of resonators repre-
senting pieces of the plasma-filled periodic waveguide of
lengths 2nd�s�2m 1 1�. The field distribution of the TG
modes at v

�s�
6n is self-organized in such a way that it is

periodic on the length 2nd�s�2m 1 1� and has a structure
of a standing wave. The only difference from a common
resonator is that the resonance frequencies can lie infinitely
close to each other, and that the length of such resonator
can vary with changing the resonant frequency. Also it is
worth mentioning that the length of the resonators can be
shorter than the period of the plasma-filled waveguide d
and even tends to zero for large s and m. Such self-
organization is possible because a resonant interference
occurs at frequencies v

�s�
6n between a forward wave and

higher spatial harmonics of a backward wave which ap-
pear due to reflections from the wall ripples. Therefore,
every point of the TG mode spectrum can be considered
as a cutoff frequency or as a point lying infinitely close to
a cutoff frequency.

Besides, inside the forbidden bands v
�s�
2n , v , v

�s�
1n,

the strongly damped nonproper oscillations with a continu-
ous spectrum can occur [4]. They have no counterparts in
smooth plasma-filled waveguides.

The revealed unusual fractal properties of the TG waves
can be very essential for the development of an adequate
theory of their excitation in periodic plasma-filled struc-
tures and treatment of experiments.
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