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We study the formation of patterns in the genuinely nonlinear reaction diffusion model equation ut 1

2a�u2�x � �u2�xx 1 F�x,u�, where u may be viewed as an amplitude of a thermal wave in plasma or
density of a biological species and F � u�1 2 u� or F � q�x�ul , l � 0, 2. We provide a transformation
which maps the model into a purely diffusive process free of its interacting part and its intrinsic temporal
and spatial scales. The well known attractors of the diffusive process enable us to completely characterize
the emerging patterns which, depending on F and initialization, may be a semicompact, or a compact,
traveling wave or a nontrivial equilibrium.
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The reaction-diffusion processes encompass a wide
variety of phenomena ranging from chemical reactions,
combustion fronts, thermal waves in plasma, to biological
processes such as spread of favorite genes or population
dynamics [1–3]. Though a realistic description of these
processes is quite complex and, depending on the problem
at hand, may involve a variety of state variables and
external fields, on the level of a paradigm, the celebrated
Kolmgoroff-Petrovski-Piskunoff (KPP) equation,

ut � uxx 1 u 2 u2, (1)

in spite of its simplicity encapsulates the essence of these
processes. Surprisingly enough, nonlinear diffusion,
which is universally acknowledged as an important
mechanism in these processes, is very rarely included in
the studies of these problems [1,2]. In this Letter I address
the impact of nonlinear diffusion on reaction-diffusion
processes. The model problem studied is

ut � �u2�xx 1 u 2 u2. (2)

Depending on the interpretation of u, the nonlinear
diffusion in Eq. (2) reflects the fact that the population
(chemical concentration or plasma temperature) disperses
to regions of lower density (concentration or temperature)
more rapidly as it gets more crowded. Notably, unlike the
conventional diffusive tails, nonlinear diffusion supports
compact fronts. Other aspects of reaction-nonlinear-
diffusion interaction will be described shortly. In a
biological context the colonial development of lubricating
bacteria such as Paenibacillus dendritiformis (which
extract fluid from the substrate for swimming) is de-
scribed by diffusion which is proportional to the bacterial
density. When grown on high nutrient substrate the
bacterial density u�x, t� is given by Eq. (2) [3]. Though
the nonlinear diffusion may take a variety of forms, on
the level of a paradigm Eq. (2) seems to be not only the
simplest relevant extension of the KPP, but it also has
the most enticing property of a nonlinear model: it is
solvable. Since, with a very few exceptions, each of which
is celebrated in its own right, nonlinear spatiotemporal
dynamics cannot be resolved analytically, any solvable
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case makes it into a very valuable bench mark from both
theoretical and computational points of view. This is
achieved via a transformation which maps Eq. (2) into
a purely (nonlinear) diffusive process given by Eq. (18),
completely free from the reactive part. Since the later
stage of a diffusive process is governed by its well known
global attractors, this provides us a complete description
of later phases of the process with the memory of the
initial setup encapsulated into one global invariant. We
start with an extension of Eq. (2),

ut � �un�xx 1 u 2 un, n . 1 . (3)

If u is a solution of Eq. (3) and new variables V and t

are defined as �mkm � ln�1 1 z0�, z0 � const�

u�x, t� � f�t�V�x,t�, t � ln�z0 1 emt�1�m 2 km ,
(4)

where f � �1 1 z0e2mt�21�m, then Eq. (3) is invariant
under u ! V , t ! t; i.e., V �x, t� satisfies Eq. (3). In-
deed, if we use (4) in (3) we obtain �m � n 2 1�

f2n� �f 2 f�V 1 f2mVt � LxV
n, (5)

where Lx � ≠2 2 1. Let f2n� �f 2 f� � 21 define f.
If t �

R
0 f�t�m dt, V satisfies Eq. (3). The invariance

property holds for a variety of linear operators. For
instance,

ut � =2�um11� 1 u�1 2 um�, m � n 2 1 . (6)

Using (4) one generates a whole family from a given
solution. Two special cases are of interest.

1. Traveling kink [1].—Let s � x 2 t, then

�≠s 1 1� ��≠s 2 1�un 1 u� � 0, n . 1 . (7)

The common factor simplifies the problem and yields

un21 �

Ω
1 2 exp�a�s 2 s0��, s # s0,
0, otherwise, (8)

which, due to nonlinear diffusion, is a semicompact pulse.
Here a � �n 2 1��n. Taking s � x 1 t yields a kink
moving to the left. Introducing delta into the reactive part,
u 2 u2�d, reveals that while in KPP the speed of the wave
remains unchanged, in Eq. (2): s ! �x 2 dt��d.
© 2002 The American Physical Society 194501-1
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2. A compact expanding wave [1,2].—Let

un21 � A�t� �1 2 D�t�cosh�x�2��1; (9)

then A�t� and D�t� are given via �B � D2, s � 1�A�

nsB0 � 22B�1 2 B� and s0 1 s � 1 1 B�n .
(10)

It is easily seen that as t " `, s ! 1, and B ! 0 )

�A�t�,D�t�� ! �1, 0�. Here D�0� � cosh21�a�2�, where
�2a, 1a� is the initial spread of the pulse. Also, as t " `,
each front approaches a steadily traveling wave.

Bounds: Using property (4) we rewrite solution (8) as

um �
emt

z0 1 emt
Vm

∑
x 2

1
m

ln

µ
z0 1 emt

z0 1 1

∂∏
. (11)

As t ! `, all solutions of Eq. (11) converge to the same
state, but with a shift in phase:

u ! V �x 2 t 1 km� as t ! ` .

Consider now Eq. (2), appended with

u�x, t � 0� �

Ω
0 , f�x� , `, if x , 0,
0, otherwise.

(12)

We now use the freedom to choose z0 to construct a sub
u and a supersolution u such that at t � 0

u�x, t � 0, z01� , f�x� , u�x, t � 0, z02� . (13)

Then, by the maximum principle, u�x, t� # u�x, t� #

u�x, t� at all times. Now, since both u�x, t� and u�x, t�
converge to the exactly same, albeit phase shifted kink,
our solution is “trapped” in between. Thus, though lemma
bounds the front and fixes its speed, it falls short of pro-
viding its exact location.

Compact initial datum: From Eqs. (9) and (4) we have

um �
emt

z0 1 emt
A�t� �1 2 D�t� cosh�x�2��1 . (14)

Family (14) is now used to construct a sub- and a superso-
lution such that if at t � 0, u , f�x� , u, where u�x, t �
0� � f�x�, for 2a , x , a and u � 0 elsewhere, then
the solution is trapped for all times in between. Again, the
velocity of each left(right) moving sub(super) front is the
same and equals the speed of the actual front.

Attractors: Our goal is to eliminate the intrinsic tempo-
ral and spatial lengths. To this end let

t � �exp�mt� 2 1��m, u � ety , (15)

and m � n 2 1. Thus

yt � �yn�xx 2 yn. (16)

Equation (16) is now cast into yt � �≠x 1 1� �≠x 2

1�yn; thus

yt � e2x�e2x�yne2x�x �x. (17)

We now defineR � e2x . 0 and Z � R1�2ny, to obtain
194501-2
r�R�Zt � D0�Zn�RR and Z�R � 0, t� � 0 . (18)

r�R� � R2V where V � �3n 2 1��2n and here D0 � 4.
Equations (17) and (18) have two invariants:

I6 �
Z `

0
ZR2�21�1�n�71��2 dR � 2

Z `

2`

ye6x dx . (19)

Equation (18) is a key to what follows; we started with
Eq. (2) and reduced it into a purely diffusive process. If
u is understood as a plasma temperature in a heated ho-
mogeneous medium with radiative losses, then in mapped
coordinates Eq. (18) describes a “pure” thermal diffusion
in an inhomogeneous background with density distribu-
tion r�R�. The fact that the intrinsic lengths and times of
Eq. (2) are removable gives to the process an obvious uni-
versality. For instance, in the biological context, the evo-
lution of the bacterial colony is a scalable process which
can exist on different scales. As a consequence, Eq. (18)
admits a group of scalings Z � R1�2n�t1��n21�. Conser-
vation of I1 then implies Z � R�12n��2n, which in turn
yields a similarity solution which for n � 2 is

Zs �
1

p
t�

z �1 2 a0z �1 where z � �R�t2
� �1�4, (20)

and a similar response for any n . 1. In (20) it was
convenient to set t ! t� � t 1 1. Thus t� � 0 , t �
2`. Equation (20) is a response to a weighted dipole
at the origin: Z�R, t� � 0� � I1R7�4d0�R� which yields
a0 � 1�

p
6I1. Now, if s0 � ln 2I1, then in terms of u

us � �1 2 e�s2s0��2�1 , (21)

which is recognized at once as the kink solution (8). How-
ever, now we invoke the fact that the self-similar solu-
tions of diffusive processes like (18) are well known to
be their strong attractors. An example of a numerical
solution of Eq. (18) is displayed in Fig. 1 and shows a
typical initial datum �Z�R, t � 0� � R1�4u�x, 0��, con-
verging into the self-similar regime. For an observer at
a distance from the initial setup, the response after a while
appears as though it was due to a concentrated source shar-
ing the same global invariant I1 with the actual process:
I1 �

R0
2` e

xu�x, 0�dx. All other initial details are washed
away. The proof of the convergence toward self-similarity
given in [4] for r � 1 was extended to certain inhomo-
geneous media [5]. In the present case the process con-
verges to the self-similar regime, but the singularity of r
necessitates the modification of the proof in [5] (see [6]
for details).

In conclusion, the equivalence of processes (2) and (18)
means that the convergence of solutions of Eq. (18) to the
self-similar flow (20) implies the convergence of processes
given via Eqs. (2) and (12) into the universal state (8).

Remarks.—(A) If in (16) the sink turns into a source,
1K2y2, the characteristic length becomes essential and
the system explodes in a finite time over a finite do-
main [7]:
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FIG. 1. Evolution of initial datum toward the self-similar stage
with the location of the front normalized to one.

y�x, t� �
4 cos2�Kx�4�
3K2�t� 2 t�

, jxj , 2p�K , (22)

and vanishes elsewhere. (B) Solution (9) rewritten as
Zn21 � A�t�r2n23�r2 2 r� �r1 2 r��2, where r2n � R
and r6�t� � �1 6

p
1 2 D2��D, describes the motion of

two fronts: one moving inward, the other outward. Since
Eq. (18) is no longer spatially invariant, the location of
initial distribution matters. The initial distribution over the
�2a, 1a� interval is mapped into �r0, r1�. Note that now it
takes an infinite time for the left front to arrive at the cen-
ter. We show in [6] that the Z-solution is also an attractor.
Thus any initial patch of bacterial colony acquires a scale
invariant, globally stable, universal pattern.

Advection: Adding advection to Eq. (2) we have

ut 1 2a�u2�x � �u2�xx 1 u 2 u2. (23)

Two traveling waves are obtained from (8) for l6 �
a 6

p
D where D � 1 1 a2, with a � 2l6. Now both

kinks are different. We eliminate the source and let R �
exp�d1�1 1 d2

2�x and Z � Rhy, where d6 � a 6
p

D,
h � s��4 1 2s�, and s � 2d2

2, to obtain Eq. (18) with

V � �4 1 3s�2���2 1 s� and

D0 � �2 1 s�2d2
1�4 . (24)

Equation (23) is thus mapped into a purely diffusive pro-
cess which turns its traveling kinks into global attractors.
Without the reactive part Eq. (23) is a variant of the Burg-
ers equation being mapped into (18) �V � 2�.

Initial boundary value problem (IBVP): If the bacterial
colony is confined to a rigid domain with, say, u�6L� � 0,
then we shall show that unlike the KPP case which has
both stable and unstable states, here any domain and ini-
tial setup support a globally stable nontrivial equilibrium,
y�x�, given, for n � 2, via
194501-3
12�y0�2 2 3y2 1 4y 2 E�y
22 � 0 (25)

�0 , E� , 1� with y0�0� � 0 and E� � 4y�0� 2 3y2�0�.
The linear stability of (25) with L " ` as E� ! 1 is easy.
To obtain global stability we turn to its mapped form,
Eq. (18), with u�6L� � 0 ) Z�R6� � 0. The separable
solution Z� � Z1�R�Z2�t� of Eq. (18) leads to

u��x, t� �
y�x�

1 1 c0e2t , c0 � const. (26)

Clearly, u� ! y�x�. Since, however, Z��R, t� is well
known to be a strong attractor of the IBVP with homo-
geneous boundary conditions [5], this uplifts u��x, t�, the
mirror picture of Z�, into a universal, later time description
of the process, with the final equilibrium shape attained
during the later stages of the evolution.

Spatial inhomogeneity: We now consider how explicit
spatial dependence of sinks and sources facilitates the
emergence of localized states. In the present context the
simplest such problem is perhaps

ut � �u2�xx 1 �K2 2 x2�ul and l � 0, 2 . (27)

1. We start with l � 0 and assume a solution of the
form

u�x, t� � �K2A�t� 2 B�t�x2�1, K2A�0� . B�0� .
(28)

The evolution of A�t� and B�t� is easily determined. As
t " ` the system settles into an equilibrium state

u � u0�3K2 2 x2�1, where u0 � 1�2
p

3 , (29)

and u � 0 elsewhere. The original motivation in seek-
ing such patterns was to find stable self-confined thermal
states of plasma, free of thermal flux on the boundary [8].
This turns out to be impossible unless some explicit spatial
dependence is introduced. In a biological context, spatial
dependence represents a patch of a fully protected domain
surrounded by a completely hostile environment. Using
the freedom to choose K, A�0�, and B�0�, we construct
sub- and supersolutions which “trap” the actual initial da-
tum and “force” the pattern to settle into (29).

2. Let l � 2. K is now a control parameter. For K � 1
Eq. (27) may be written ut � �≠ 2 x� �≠ 1 x�u2 and thus

ut � e2x2�2�e2x2

�ex
2�2u2�x�x. (30)

We now generalize the problem and consider

ut � �un�xx 1 q�x�un. (31)

Observe that if u�x� is the ground state

u00�x� 1 q�x�u�x� � 0, u�x� . 0 , (32)

then Eq. (31) may be rewritten as

ut �
1
u

∑
u2

µ
un

u

∂
x

∏
x
. (33)

We now define new variables via

y � u�u1�n and z �
Z

dx�u2�x� , (34)
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and the problem takes the form �r�z�x�� � u311�n�

r�z�yt � �yn�zz. (35)

To understand the impact of r�z� we define

M �
Z

r�z�dz �
Z

u111�n dx. (36)

If M , ` then, as shown in [5], the diffusion process
undergoes a fundamental change for now in 1D or 2D (but
not in 3D) as t " `, y ! y0 � E�0��M . 0, where

E�0� �
Z

r�z�y�z, 0�dz �
Z

u�x�u�x, 0� dx .

Note that we have implicitly assumed that for a given
q�x� there is a unique u�x� . 0. When q�x� begets mul-
tiple u solutions, the associated M [see (36)] are un-
bounded, so that the resulting equilibria of (35) are trivial.
If q�x� � K2 2 x2 then, for K � 1, u�x� � exp�2x2�2�
and M , `. Now y � u�

p
u ! y0, i.e.,

u�x, t� ! y0 exp�2x2�2n� . (37)

For K fi 1 the eigenstates um�x� are possible for K2 �
2m 1 1 and um�x� � Hm exp�2x2�2�, where Hm are the
Hermite polynomials which for m . 1 admit negative val-
ues and are thus unacceptable. Thus for K fi 1 all initial
data either decay or blow up. If q�x� decays algebraically
things are more delicate for, say,

q�x� � 2a
�A 2 2�1 1 a�x2�

�A 1 x2�2 ) u �
1

�A 1 x2�a
,

unless 2a $ n , �n 1 1�, M is unbounded, and absorp-
tion is too weak to arrest the diffusive spread.

Radial symmetry: We consider

ut � r2N ≠

≠r

µ
rN

≠u2

≠r

∂
1 q�r�u2, N � 2, 3 . (38)

Let q�r� be given with u�r� being the ground equilib-
rium solution of (38) and y � u�

p
u. Then in 2D

u3�2yt � r21 ≠

≠t

µ
ru2 ≠y2

≠t

∂
. (39)

Using z �
Rt

0 dr�ru2 we remap Eq. (39) into Eq. (35),
zeR1, with the total mass now given asM �

R`

0 ru3�2 dr.
Using our study case, we find planar equilibrium for
q�r� � 2 2 r2 with the ground states being given, again,
via u�r� � exp�2r2�2�. Numerical experiments, like
the one in Fig. 2, confirm that for K2 , 2 �K2 . 2� all
initial conditions decay (blow up). We also find that all
elliptic equilibria for q�x, y� � K2 2 �x2 1 by2� with
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FIG. 2. The equilibrium pulse which emerges for q�r� �
2 2 r2 from the initial datum: u�x, y, t � 0� � cos�px�
2� cos�py�2� given over the �jxj, jyj� # 1 square. The maximal
amplitude of the pulse is �0.3 and its diameter �10.

K2 � 1 1 b and u�x, y� � exp�2�x2 1 by2��2� as the
ground state are numerically unstable unless b � 1.

In 3D diffusion undergoes a fundamental change, for
now zero is not in the spectrum of the Laplace operator
and E�t� # 0 even when M is finite. Thus y0 vanishes [9]
and all 3D stable equilibria of Eq. (38) are trivial.

In summary.—The reaction-diffusion process given by
Eq. (2) was mapped into a well understood purely diffusive
process which made it possible to unmask its universal
features.
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